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ABSTRACT

ANALYSIS AND TESTING OF PLATES WITH PIEZOELECTRIC

SENSORS AND ACTUATORS

Jeffrey S. Bevan

Old Dominion University, 1997

Director: Dr. Chuh Mei

Piezoelectric material inherently possesses coupling between electrostatics and

structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically

coupled pair of piezoelectric constitutive equations. One set describes the direct

piezoelectric effect, where strains produce an electric field, and the other set describes the

converse effect, where an applied electrical field produces strain. The purpose of this

study is to compare the finite element analysis and experiments of a thin plate with

bonded piezoelectric material.

Since an isotropic plate in combination with a thin piezoelectric layer constitutes a

laminated composite, the classical laminate plate theory is used in the formulation to

accommodate generic laminated composite panels with multiple bonded and embedded

piezoelectric layers. Additionally, the von Karman large deflection plate theory is

incorporated in the stress-strain relations of the laminate. The formulation results in

laminate constitutive equations that are amenable to the inclusion of the piezoelectric

constitutive equations, yielding a fully coupled electrical-structural composite laminate.

Using the finite element formulation, the governing differential equations of motion

of a composite laminate with embedded piezoelectric layers are determined. The finite

element model (FEM) not only considers structural nodal degrees of freedom (d.o.f.) but

an additional electrical d.o.f, for each piezoelectric layer.
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Comparison is performed by treating the piezoelectric first as a sensor, and then again

as an actuator. To assess the piezoelectric layer as a sensor, uniformly distributed

pressure loads were applied and the corresponding generated voltages were determined

using both linear and nonlinear finite element analyses. Experiments were carried out by

applying the same uniform distributed loads and measuring the resulting generated

voltages and corresponding maximum plate deflections. It is found that a highly

nonlinear relation exists between maximum deflection and voltage versus pressure

loading.

The dynamic sensor was evaluated by comparing the predicted sensor voltage with

the experimental voltage due to a sinusoidal point excitation. In order to assess

piezoelectric actuation, a sinusoidal excitation voltage was applied and the center plate

deflection was measured experimentally and compared to the predicted displacement.

The plate deflection, as a function of time, was determined using the linear finite element

analysis.
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FOREWORD

The research results contained herein partially fulfill the requirements of NASA

research grant NAGl-1684, entitled "Experimental and Numerical Analysis of Structural

Acoustic Control for Interior Noise Reduction." This Masters of Science thesis prepared

by Jeffrey S. Bevan under the guidance of Professor Chuh Mei of Old Dominion

University, Aerospace Engineering Department, constitutes the research results contained

herein. The report presents a coupled electrical-structural finite element formulation,

finite element analysis, and experimental results of a panel with a bonded piezoelectric

sensor and actuator. The Aerospace Engineering Department, Old Dominion University

and Langley Research Center Structural Acoustic Branch both provided computational

and experimental facilities required to complete the research study. Mr. Travis L. Turner

of Langley Research Center Structural Acoustic Branch was the technical monitor.
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CHAPTER I

INTRODUCTION

1.1 Historical Perspective

The piezoelectric effect was first identified in 1880 by Pierre and Jaques Curie [1] and

has remained an active research topic ever since. The Curie's discovered the direct

piezoelectric effect by placing a weight upon a crystal and observing that a charge

proportional to the weight was generated. Shortly thereafter they confirmed the converse

piezoelectric effect by observing an induced strain resulted when a voltage was applied to

the crystal. Hence the term piezoelectricity, meaning pressure electricity, was coined to

describe this phenomenon. Piezoelectricity remained somewhat of a scientific curiosity

since the complexity of the coupled electrical and mechanical properties were unknown.

Thus one of the objectives of the earliest research efforts was to better understand the

coupled electrical-structural properties of piezoelectric material and to developaccurate

analytical models to support and direct engineering design applications.

A portion of the mysterious veil was lifted from piezoelectricity during World War 1

when Professor Langevin, under the auspices of the French government, set out to

determine a method to detect submarines [1]. Professor Langevin used piezoelectric

crystals in a device that, when submerged underwater, generated a voltage when a

disturbing wave front would impinge upon it. Conversely when the device was

electrically excited it would vibrate and emit a longitudinal underwater wave. Professor

Langevin was unable to conclude his research until after the war, however his device was

the predecessor of today's modem sonar transducer.

Another early application of piezoelectricity was discrete crystal circuit devices such

as oscillators and filters. The crystal oscillators were extremely stable and were used

extensively in military communication equipment. At one point there were in excess of

30 million crystals in military equipment in one year [1]. The crystal controlled

oscillators resulted from the research efforts of Cady at Weslyan University [1]. Not only



dopiezoelectriccrystalspossessacharacteristicstableresonance,they alsoareextremely

selective,which is indicatedby their high mechanicalQ values. This sharpness provided

the ability to design extremely discriminate filters, resulting in precision circuitry capable

of separating simultaneous multiplexed conversations over a single pair of wires. It is not

difficult to realize the important role that piezoelectric crystals had in the development of

today's modem telecommunications industry.

Another milestone in understanding piezoelectric phenomena was contributed by

Professor Mindlin. Mindlin began ground breaking analysis on waves and vibrations in

isotropic elastic plates concurrently with high frequency vibration of crystal plates [2].

Subsequent work on isotropic bars and plates lead to unprecedented design and

development of electromechanical filters and discrete time delaying devices. Mindlin's

pioneering papers on crystal plates may be considered the most significant in modem

piezoelectric research, since it clarified the complicated coupled piezoelectric

phenomena, leading the way to improved piezoelectric designs for quartz crystal filters.

Mindlin's research lead to a sole-supplier contract in 1955 from the U.S. Army Signal

Corps, a long time sponsor of the research on crystal plate vibrations, resulting in a

monograph entitled "An Introduction to the Mathematical Theory of Elastic Plates".

Since the application of quartz filters and other circuit devices such as surface acoustic

wave devices, piezoelectric materials have found uses in numerous applications such as

dot-matrix printers, computer keyboards, high-frequency stereo speakers, igniters,

microphones, accelerometers, and various transducers (force, strain, and pressure),

however a new and active research area commonly referred to as smart structures has

become a very popular research topic.

The concept of smart structures is a relatively new and diverse field. The

fundamental core of smart structures integrates sensors and actuators to structural

• elements to obtain a state of desirable static and, or dynamic control [3]. The

development of smart structures has resulted from three recent significant trends [4]. The
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first is the increasedutilization of traditional laminated compositestructures. The

compositematerial theoryincorporatessmallerconstitutiveelementsthuspermitting the

inclusionof piezoelectricconstitutiverelationswith relative ease.It is not unreasonable

to visualize a structuralmemberconsistingof multiple sensors,actuators,and signal

processors.

The secondtrend is the considerationof coupling the structural and electrical

propertiesby utilizing the off-diagonaltermsof the constitutiverelations. This practice

hasbeenutilized by the largedeflection laminatedcompositetheory by including the

coupledbending-extensionallaminatestiffness. The third trend is the advancedrateof

growth within the computerscienceand electrical engineeringdisciplines. Hardware

improvementssuchasminiaturizationand increasedcomputationalpower permit faster

andmorecomplexalgorithmsresultingin greateradaptabilityof thesmartstructure.

Even though Mindlin's work transformedpiezoelectricityfrom a stateof scientific

curiosityto anappliedscience,hishigher-ordertheoryof wavepropagationis not directly

applicableto low frequencystructuralvibrationsof laminatedstructures. Considering

that the physicalgeometrydictatesthat the structuralresonancesoccurseveralordersof

magnitudebelow the piezoelectriccrystal'snaturalfrequency,linearpiezoelectrictheory

is exploited where the only electrical and structuralinteractionarisesfrom the linear

piezoelectricconstitutiverelations[5].

Thegovemingequationsfor distributedpiezoelectricusing linearpiezoelectrictheory

combinedwith the classicallaminateplatetheorywaspresentedby Lee [6]. Subsequent

research has exploited linear piezoelectric theory for numerous smart structure

applicationssuch as self-sensingpiezoelectricactuators[7] and modal analysisusing

piezoelectricsensors [8]. The self-sensingpiezoelectric actuator results in a truly

collocatedsensoriactuatorcapableof simultaneouslymeasuringa structure'sdynamic

responsewhile providing a controlling input. The collocationcharacteristicprovidesa

costbenefitby reducingthenumberof transducers[9]. Furthermorea classicalcoupled



electrical-structuralanalysisapproachwas demonstratedby Lai [10] to control panel

flutter.

Theclassicalanalyticalsolutionmethodof piezoelectricstructuralanalysishasbeen

extremelyuseful, howevertheir solutionsare restrictedto relatively simple geometries

and boundaryconditions. Sincethe finite elementmethodhasprovedto be a powerful

andpopulartechniquefor theanalysisof complicatedstructuresandmulti-field problems

it maybeappliedto the coupledelectrical-structuralpiezoelectricsystem.

Piezoelectricsolid finite elementswere formulatedand appliedto transducersand

oscillatorsby Allik andHughes[11].Howeversincesmartstructurestypically consistof

thin piezoelectriclayersattachedto structuresthatareseveralordersof magnitudegreater

in thickness,thesolid finite elementformulationleadsto aninherentlyinefficient process

in which to model the completephysical structure. ThusTzou andTsengformulateda

newthin piezoelectricsolid finite elementcoupledto shellandplatefinite elements[12].

Theintrinsic parasiticsheareffectsassociatedwith suchfinite elementswere eliminated

by theintroductionof internald.o.f.'swithin thepiezoelectricplateelement.

Onesuchapplicationof the finite elementmethodincorporatingpiezoelectricsensors

andactuatorwaspresentedby Zhou in analyzingandsuppressingpanelflutter [13]. The

flexibility of the finite elementmethodwas demonstratedby Zhou by formulating a

structural, electrical, and thermal coupled analysis resulting in the control and

suppressionof panel flutter of compositelaminatedpanels at elevatedtemperatures.

Zhou provided simulation results for aerodynamicallyinduced large deflectionswith

multiple embeddedpiezoceramicactuatorsfor variousply orientations. In additionZhou

introduceda novel time domainnonlinearsolutionmethodby developinga setof forced

Dufflng equations in reduced modal coordinates. By introducing the modal

transformation,the numberof equationsto besolvedis greatly reducedthus affording

greatcomputationalsavings.



1.2 Objective and Outline

Much researchhasbeenconductedusing linearpiezoelectrictheory for control in a

varietyof structuralvibrationapplications.Both classicalanalysisandthe finite element

methodhasbeenutilized. Theobjectiveof this researchis to comparethe fully coupled

electrical-structuralfinite elementanalysisof an isotropicpanelwith a surfacemounted

piezoelectricpatchto experimentaltestresults.

This thesis is organizedas follows. In ChapterI, a historical backgroundand the

objectiveof this studyis presented.ChapterII introducesthe piezoelectricphenomena.

In addition, an electrical equivalent model and the coupled linear piezoelectric

constitutiverelationsareintroduced.ChapterIII presentsthefinite elementformulation,

includingthe fully coupledelectrical-structuralconstitutiverelations. An effort hasbeen

madeto developthemostgeneralformulationapplicableto laminatedcompositeplates.

To this end, the von Karman large deflection theory was incorporated,basedon the

resultsobtainedfrom theexperimentsconducted.The finite elementformulation is then

modified to accommodatethe inclusionof the electricaldegreeof freedomto satisfythe

electrical-structuralcoupledlinear piezoelectricconstitutive relations. Next, the finite

element matrices are derived using Hamilton's principle and the subsequent equations of

motion assembled. Lastly, solution procedures for the static and dynamic sensor and

dynamic actuator are presented. Chapter IV presents the experimental aspects and the

test plate clamping fixture design. The fixture design specifications and boundary

conditions are discussed along with the applied loading procedures. In addition a

discussion of piezoelectric wafer preparation and mounting is presented. Chapter V

presents and compares the predicted and experimental results. Comparison of the results

obtained from test and analysis of a quasi-static sensor subjected to uniformly distributed

loading is presented, along with results for a dynamic sensor due to mechanical point

loading and dynamic piezoelectric actuation. Chapter VI provides a discussion of the

results and conclusions.



CHAPTER II

PIEZOELECTRICITY

2.1 Introduction

When a piezoelectric material is subjected to mechanical strains or stresses it gives

rise to an electric polarization, or it simply generates an electric charge. This

phenomenon is referred to as the direct piezoelectric effect. Conversely, a piezoelectric

material will undergo strain when it is electrically polarized, or subjected to an electric

field. This action is referred to as the converse or reciprocal piezoelectric effect. It is

important to note that piezoelectric materials are polarized such that elastic deformation

depends on the sign and magnitude of the applied electric field. That is to say,

piezoelectric material may undergo either elongation or contraction, simply by reversing

the polarity of the applied electric field. It is this polarization that differentiates

piezoelectricity from electrostriction. Electrostriction is a function of the square of the

electric field, thus sign independent [14]. Since piezoelectric materials exhibit both direct

and reciprocal effects the same specimen may be implemented as an actuator or sensor, or

both simultaneously [7,15]. The reciprocal effect facilitates actuation and the direct

effect favors sensing of structural vibrations. The piezoelectric effect maintains a linear

relationship between the electrical and mechanical quantities [5]. Thus linear

piezoelectric theory couples quasi-electrostatic field equations with a dynamic structural

system. This quasi-electrostatic approximation is valid since the phase velocities of the

structural vibrations are several orders of magnitude less than the phase velocities of the

electromagnetic waves [5]. The direct and reciprocal piezoelectric property constitutes an

inherent electromechanical coupling that is included in the constitutive relations of the

structural analysis problem considered herein.

As stated in Section 1.1 piezoelectricity was first discovered in the 1800's. The initial

piezoelectric observations utilized naturally occurring crystals such as quartz, tourmaline,

and Rochelle salt. Piezoceramics, a manufactured polarized ferroelectric material, are

6



commonly used in commercial transducer applications and will be analyzed and tested in

this study.

Even though piezoelectricity is a linear effect, a complex relationship exists between

elastic, mechanical, thermal, and electrical properties. The relationships are shown

schematically in Figure 2.1 [14]. The comers of each of the triahgles are functions

representing the E electric field, D electric displacement, o" stress, E strain, T

temperature, and S entropy. The piezoelectric effect is shown by the left-hand side of

Figure 2.1 indicated by the independent variables d, g, e, and h, which are the

piezoelectric coefficients, the dielectric permittivity £ and impermeability/3, the stiffness

c and compliance s. Linear piezoelectric theory assumes constant entropy therefore it is

an adiabatic process, thus mechanical strains do not contribute to the thermodynamic

state of the piezoelectric.

2.2 Electrically Equivalent Piezoelectric Model

The piezoceramic used for this work is in the shape of a thin plate with electroplated

electrodes on the top and bottom surfaces as depicted in Figure 2.2. Physically the

piezoceramic consists of two conductors separated by a dielectric material. Electric

circuit theory calls such a device a capacitor. In circuit theory a capacitor is a passive

device, however the piezoceramic is a polarized ferroelectric material that generates a

charge proportional to strain as dictated by the direct piezoelectric effect. Thus an

electrically equivalent model of the piezoelectric material consists of two charge

generators, a capacitor and a resistor as shown in Figure 2.3 [7]. The charge generators

qa, qp shown in Figure 2.3 represent the applied charge and self-induced charge,

respectively. The resistance Rp is the intrinsic electrical resistance of the dielectric which

in most cases is very large and represents an electrical open circuit condition which

impedes the flow of electric current.

In reference to piezoceramic materials, the applied charge results from an externally

applied voltage, and since the piezoceramic is capacitive, the charge accumulates on the
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electrodes. By definition electric current is charge in motion, hence the total current

flowing out of an enclosed volume must equal the loss of charge within the volume. This

is a statement of conservation of charge and leads to the explanation of why current flows

in the leads of a capacitor being charged (or discharged) when no current flows between

the capacitor plates. Since the piezoelectric specimen behaves as a capacitor the current

flow through a piezoelectric by an applied constant voltage is analogous to the charging

or discharging of a capacitor [16]. Current flows across the open circuit plates of a

capacitor since there is an accumulation of charge on the plates. This can be shown by

examination of statement of conservation of charge

d

4J.da= _ JpcdV (2.1)

where a is defined as current density, that is current per meter width, Pc is the charge

density, and da is the differential area with a unit normal vector.

If the volume enclosing the charge remains constant with respect to time then the time

derivative may be moved into the volume integral thus

4J-da = -J-_V (2.2)

By applying the divergence theorem, the surface integral is converted into a volume

integral so that Eq. (2.2) becomes the time-varying equation of continuity and can be

written as

,.,,.

V-J- 8pc (2.3)

If Gauss's law, V. D = Pc is substituted into Eq. (2.3) it becomes

V. j =---8 V - D (2.4)
c_



The electric displacement density D is frequently

complete description may be found in Appendix C.

respect to space and time in Eq. (2.4) yields

called flux density, and a more

Interchanging differentiation with

Casting Eq. (2.5) in integral form and applying the divergence theorem results in

(2.5)

+ J • da = 0 (2.6)

Hence Eq. (2.6) indicates that the total current of time-varying fields is (-c_-- + J), where

is a displacement current density due to the time rate of change of the electric
gt

displacement density and J is the current density resulting from the flow of charge. Thus

when considering a capacitor being charged with a direct current, the time varying current

density J is zero due to the open circuit condition, but Eq. (2.6) indicates the existence of

a displacement current density c_) flowing through the leads of the capacitor being
c2

charged, or the piezoceramic.

2.3 Piezoelectric Constitutive Equations

Electric enthalpy density H describes the amount of energy stored within the

piezoelectric material. Given the electrical-structural coupling of the piezoelectric

material, the electric enthalpy density is the internal coupled strain energy less the stored

electrostatic energy density [17]. The stored electrostatic energy density is analogous to

the structural elastic strain energy. A detailed derivation of the electrostatic energy may

be found in Appendix C. The electric enthalpy density is defined as

H=U-D-E (2.7)
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where U is the strain energy, D and E are the electric displacement density and electric

field, respectively whose product represents the electrostatic energy density. The

enthalpy may be expanded to yield the following relationship

so that

1

H = 1 {_}[Q]E {s} - {E} v [e]{6}--_ {E} v [c] _ {E} (2.8)

(2.9)
or° - &o

8H
D, .... (2.10)

BE,

where cru, 6u are the stress and strain respectively, D i and Ei are the electric

displacement and electric field respectively, [Q]E is the stiffness matrix measured at

constant electric field (short circuit), [£]_ is the dielectric permittivity matrix measured at

constant strain (clamped), [e] is a matrix of piezoelectric strain constants, and superscript

T represents matrix transpose.

Application of Eqs. (2.9) and (2.10) to Eq. (2.8) produces the following coupled

electrical-structural piezoelectric constitutive equations

{o'} = [Q]_{6}- [e]r {E} (2.11)

{D} = [e]{s} + [£1_ {E} (2.12)

Due to practical engineering considerations the piezoelectric strain constants [e] and

clamped permittivity matrix [_]_ are not typically available. However, the stress

constants [d] and the free permittivity matrix [E] _ are readily available and are related to

[e] and [e] _ by the following relations [12]

[e] = [d][Q] e (2.13)

10



[c]_=[E]_- [d][Q]_[d]_

Thus the piezoelectric constitutive equations can be expressed as

(2.14)

{_}=[Qy({_}-[a]T{E}) (2.15)

{D} = [d]{o'} + [£]_ {E}

Furthermore Eq. (2.15) may be substituted into Eq. (2.16) yielding

(2.16)

{D}=[d][Q]E({g}-[d] r {E})+ [6] _ {E} (2.17)

The following electromagnetic constitutive relation between the electric displacement

density and the electric field may be used to clarify the physical meaning of Eq. (2.17)

{D}=[4{_} (2._8)
Thus Eq. (2.17) can be written as

{E}= L8]_ [d]{o-} + {E} (2.19)

where [fl]° is the free dielectric impermeability defined by [fl]_ =[c] -_ , and {E} is an

externally applied electrical field. Thus the direct piezoelectric effect results in an

electric field comprised of two components or sources; one self-generated as shown in the

first term on the right hand side of Eq. (2.19), and the other due to an externally applied

voltage as shown in the second term of the right hand side of Eq. (2.19).

11



Fig. 2.1 Elastic, thermal, and electrical properties ofpiezoelectrics
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CHAPTER III

FINITE ELEMENT FORMULATION

3.1 Introduction

The derivation of the governing differential equations of motion for a panel with

embedded piezoelectric layers is introduced in this chapter. The formulation is based on

the classic laminate plate theory, including the plane stress assumption and the von

Karman large deflection theory. The variational energy method facilitates the

formulation of the linear and nonlinear finite element equations of motion in terms of the

nodal degrees of freedom (d.o.f.) and the fully coupled structural-electrical properties.

3.2 Displacement Functions

The panel with piezoelectric layers shown in Figure 3.1 is modeled using the four-

node modified C 1 conforming straight-sided rectangular plate element. Each element

consists of twenty-four structural degrees of freedom. Each node of the element contains

four bending d.o.f.'s and two membrane d.o.f.'s to represent the transverse, or out of plane

and membrane displacements, respectively. A piezoelectric element maintains consistent

structural d.o.f.'s, however an additional electrical d.o.f, is required to satisfy the

electrical coupling. Thus the nodal displacement vector is augmented by adding an

electrical (voltage) d.o.f for each piezoelectric layer present within the element. The

voltage may either be applied to, or generated by the piezoceramic layer or layers. In

essence, the electrical d.o.f.'s can be treated as structural displacements.

The element nodal displacement vector consists of the bending and membrane

displacements and the voltages which can be written as

{w} = {wb w,, w_ }r (3.1)

The bending and membrane displacements of Eq. (3.1) represent the nodal displacements

and are respectively shown as
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{wb }T = {w1 "W2 "W3 "W4 "W,x1 W, x2 "W,x3 W, x4

"W,yI W,y 2 "W,y 3 W,y 4 "W,xy I "W,xy 2 "W,xy3 "W,xy4 (3.2)

{Wm}T = {b/l /"/2 b/3 1"/4 Vl 122 "1_3 124} (3.3)

where w represents the transverse deflection, w,x, w,y are the slopes in the x and y

directions respectively, w,_y is the second order twist derivative, u and v are the x and

y membrane displacements, and the numerical subscript denotes the node number. The

electrical d.o.f.'s represented by {we} has voltage components corresponding to each

piezoelectric layer and will be subsequently described in greater detail in Section 3.3.

The continuous bending or transverse displacement is approximated using a cubic

polynomial given as

W = a I + a2x + a3Y + a4 X2 -1- asXY -_- a6Y 2 + a7 X3

+asx2y + a9xY 2 + aloY 3 + allx3 y + al2x2y 2

+a13xY 3 + a14x3 y 2 + alsx2y 3 + a16x3 y 3

which can be written in compact matrix form as

(3.4)

w= LHJ{a} (3.5)

Similarly the continuous in-plane displacements u and v are approximated using bilinear

polynomials such as

u = bI+ b2x + b3y + b4xY

v = b5+ b6x + bTY + bsxy

which can also be written in compact vector notation as

(3.6)
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=LH.J{b} (3.'/)

i;i:/

v=LHvJ{b} (3.8)

The generalized coordinates {a} and {b} maintain a spatial relationship to the nodal

displacements through coordinate transformations and are functions of time only. The

transformation relationship is given by

{a} = ITb]{w b} (3.9)

{b} = [T,,,]{Wm} (3.10)

Appendix A provides a comprehensive derivation of the bending and membrane

transformation matrices [Tb ], IT,,]. Since the electrical degrees-of-freedom {w_} vector

represents the voltage per piezoelectric layer and does not possess any preferred

geometrical orientation, coordinate transformation is not required.

The displacement field may be expressed in terms of the nodal d.o.f.'s by substituting

the respective coordinate transformations into the displacement field approximations,

thus substituting Eq. (3.9) into Eq. (3.5) and Eq. (3.10) into Eqs. (3.7) and (3.8) yields

{w}= LHwJ[T_]{w_}=[Bw]{w_} (3.11)

{u}=LH.J[Tmk} =[B.]{w,,,} (3.12)

(v}=kHvJ[Tm]{_m}=[B_](_m} (3.13)

where the [B_], [B, ], and [B,,] matrices are the shape or interpolation function matrices.

3.2.1 Linear Analysis

The majority of the work considered herein is based on the assumption of small

displacements. The strains are therefore comprised of inplane or membrane strains and

bending curvatures as

{_} = {80}+ z{_:} (3.14)
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which can be expanded as

[.xt,.ol{.}e', =i_'°_+z ,'% (3.15)

r,, [r°_J ,_._

where {s o } is the membrane strain vector and {a:} is the bending curvature vector. The

membrane strains and curvatures are functions of the inplane and bending displacement

respectively and are defined as

and

{ olj,,xl
L,,,+,,,J

(3.16)

t% = - W,yy (3.17)

By introducing the approximations for the displacement field as previously defined and

recalling the generalized coordinate relationship, the strain vector can be expressed as

r LH,,J,., ]
{co}: I LH,,.J,,, l{b):[c,,]{b}

LLH,,],>,+LH..,.J,.,J

Similarly the curvature may be expressed in terms of the generalized coordinates as

(3.18)

[ - LH,,..J,.,,,]

{_}=i- LHwA,__{a} = [cbl{a } (3.19)

L-2LHwJ,_J

where the matrices [Cm] and [Cb] result from the differentiation of the shape functions

with respect to the dependent variables x and y. Thus [(2,,,] and [C b] are defined as
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10y000 J[c.,]= o o o o o 1
0 1 x 0 1 0

(3.20)

fi 0 0 2 0 0 6x 2y 0 0 6xy 2y 2 0 6xy 2 2y 3 6xy 3
[Cb]= 0 0 0 0 2 0 0 2x 6y 0 2x 2 6xy 2x3 6x2y 6x3y

0 0 0 2 0 0 4x 4y 0 6x2 8xy 6y2 12x2y 12xyz 18x2y 2

(3.21)

Expressing the generalized coordinates in terms of the nodal d.o.f.'s the strain and

curvature vectors may be written as

{6°}=[c.Iv.k} = [B_]{w_} (3.22)

{.}= [c_][_]{w_}: [B_]{_}

where [Bm ] and [Bb are the strain interpolation matrices.

can be written in terms of nodal d.o.£'s as

(3.23)

Thus the strains in Eq. (3.14)

{6} = [Bm]{wm} + z[Bb]{Wb} (3.24)

3.2.2 Large Deflection Analysis

The von Karman plate theory is a geometrical nonlinear theory that accounts for

moderately large deflections and small rotations of the mid-surface of the plate. Thus the

yon Karman large deflection strain-displacement relations are defined as

{s} = {60} + z{t¢} (3.25)

where

{60}= {60 }+ {go } (3.26)

Hence {_0} is identical to the previously defined membrane strains {g0 }, and {go } is the

membrane strains induced by the large transverse deflection. The strain-displacement

relations for moderately large displacements is defmed as
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tJ= + 1 2 (3.27)
Cy , V,y , -_] W,y W, yy ,

In future derivations it will become apparent that it is convenient to express the large

deflection strain in terms of the slope matrix and slope vector as

{s ° }= 1 [0]{0} (3.28)

where the slope matrix and vector elements are the derivatives of the transverse

displacement function. Thus the slope matrix and vector are defined respectively as

-w,x 0 ]
[o]= o w,y

_ W_y W_x j

(3.29)

{0} = tw'_ t (3.30)
kW_y)

Utilizing the definition of the slope matrix and vector of Eqs. (3.29-30)7 the strain due to

large deflections may be expressed in terms of the generalized coordinates. Recognizing

that the slope vector is the derivative of the bending shape functions, Eq. (3.28) becomes

{go}: l[o/!fw!'x ]{a} = l[o][ce]{a}
z LL.t-z,,,d,yJ

where [C o] results from the indicated differentiation and is given as

(3.31)

0 1 0 2x y 0 3X 2 2xy[Co]= 0 1 0 x 2y 0 X 2

y2 0 3x2y 2xy2 y3 3x2y2 2x37 3x2y3_ (3.32)

2xy 3y 2 x 3 2x2y 3xy 2 2x3y 3x2y 2 3x3y2j

Employing the coordinate transformation,

terms of the nodal d.o.£'s as

the membrane strains can be expressed in
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{¢o}= I[O][Co][Tb]{Wb}=I[O][Bo]{Wb} (3.33)

Hencethe strain-displacementrelationsdescribedin Eq. (3.24)canbewritten in termsof

thenodald.o.f.'sas

=[Bin]{w,,,}+l[o][Bo]{Wb}+z[Bb } (3.34)

3.3 Electric Field and Electric Displacement Density

In Section 3.2 the nodal displacement vector included a term described as the electrical

degrees of freedom. The most general composite piezoelectric element may consist of

many piezoelectric layers embedded within a laminated composite panel resulting in a

electrical d.o.f, vector which contains an applied (or measured) voltage corresponding to

each piezoelectric layer. The electrical d.o.f.'s can therefore be expressed as

{wo}={V_ V2 ... V,p} r (3.35)

where np represents the number of piezoelectric layers presents.

The electrode of the piezoelectric layer establishes an equipotential boundary

condition and the dielectric permittivity is assumed isotropic. The voltage establishes a

linear electric displacement density and electric field through the thickness of the

piezoelectric material. The electric field strength is the negative of the voltage or

potential gradient, and is defined as

E = -VV (3.36)

The piezoelectric material considered for this study is a thin rectangular plate and

assumed to be isotropic, thus the stress/charge constants simplify to d31 = d32. Since the

electrodes are on the top and bottom of the piezoelectric plate, polarization occurs only in

the 3-direction. The stress/charge constant d33 is assumed to be constant throughout the

thickness which results in an electric field in the 3-direction only. A detailed explanation
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of the stress/charge relations is provided in Appendix B. The total electric field due to all

of the piezoelectric layers can therefore be expressed as

{E3}=-[B¢]{w¢} (3.37)

where the matrix [Be ] is a diagonal matrix with elements consisting of the reciprocal of

the thickness of each piezoelectric la'rer. Thus [B¢ ] may be written as

1
-- ..o

-.
...

0

(3.38)

where np represents the number of piezoelectric layers present.

Summarizing the above results, the generalized strain-displacement relations based on

the small defection assumption can be obtained by combining Eqs. (3.24) and (3.37) as

0 0 - [Be ]Jl;;' I (3.39)

Similarly, for large deflections, Eq. (3.39) can be modified by

deflection strain of Eq. (3.34) yielding

including the large

(3.40)

Since the electric displacement density is assumed to be generated along the polarization

axis only (3-direction), Eq. (2.17) can be reduced to

/93 = LdJ[Q]({s}- E 3{d}) + £_'3E3 (3.41)

where the appropriate strain may be employed. The stress/charge coefficients {d} are

expressed as a vector, due to the geometrical assumptions made during the transformation

of the piezoelectric constants described in Appendix B.
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3.4 Constitutive Equations

The finite element equations of motion for the plate element used will be derived

using classical laminate plate theory (CLPT). The CLPT is used, since in the simplest

case a piezoceramic patch bonded to an isotropic substrate constitutes a laminate. In the

most general case, a laminated composite element will consist of a typical lay-up with a

number of alternating piezoelectric layers. A typical laminated composite with embedded

piezoelectric layers is shown in Figure 3.2. A typical isotropic panel with symmetrically

bonded surface piezoceramic patches is shown in Figure 3.3. The CLPT assumes that the

piezoelectric is perfectly bonded and that each lamina is in a state of plane stress. For the

thin plate considered, the rotary inertia and transverse shear deformation effects are

assumed negligible.

The stress-strain relations of a specially orthotropic composite lamina and a

piezoceramic layer is [18]

and

g'l= s Q66.]s (;F12 J

(3.42)

0"2 = 2 Q22 0 e 2 -E3p d32

"t"m p 0 Q66]pL[Yi2J k 0 JpJ

(3.43)

where the subscripts s and p indicate the structural and piezoelectric lamina respectively.

The piezoelectric material considered is assumed to be isotropic in the 1- and 2-

directions therefore d31=d32 . The polarization axis of the piezoceramic is assumed to be

such that a positive strain or elongation in the 1- and 2-directions results from a "positive"

applied voltage referenced to the electrode bonded to the plate.

The stress-strain relations for the k 'h layer of a laminated composite is obtained by

combining Eqs. (3.42) and (3.43) are
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°2°61If x} f xt]_x,._ hO,6O=__6 _ y_,. dx_
(3.44)

where the transformed reduced lamina stiffness matrix [Q_ is developed from the

transformation of the principle material coordinates with respect to the global

coordinates, similar transformations exist for the stress, strain, and the stress/charge

constants. Appendix B provides a comprehensive derivation of the required principal

material coordinate transformations.

For a general orthotropic piezoelectric layer, the generated electric displacement

density along the polarization axis (3-direction) for the k 'h layer may be written as

D3k:kd x dy d_y_],/_2 _2 Q26[ _y-E3k dy +E33kE3k (3.45)
L0,6_6 066,, rx, td.,L)

Eqs. (3.44-45) may be condensed in matrix form as

{4, =[_],({,}-E,,{dL) (3.46)

Z D o"

D3k = {d}k [O ]k({8}- E3k {d}k) + £33kE3k (3.47)

where [Q]_ and {d}k are the lamina stiffness and stress/charge constants respectively for

the k th piezoelectric layer and are transformed to the global x,y coordinates. For a

composite lamina without a piezoelectric layer, set E3k = {d}k = 0.

3.5 Equations of Motion

3.5.1 Generalized Hamilton's Principle

Finite element equations of motion for the laminated composite panel with fully

coupled electrical-structural properties are derived utilizing the generalized Hamilton's

principle [19] to obtain
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_6(T-U +W e -W m + W)dt = 0 (3.48)

where T and U are the kinetic energy and strain energy of the system, W e is the electrical

energy, IV,, is the magnetic energy, and W is the work done due to external forces and

applied electric field. The magnetic energy is negligible for piezoceramic materials if no

external magnetic fields are located near the specimen. The kinetic energy of plate

element is defined as

T = jlp({fi,}r {_} + {u}r {fi} + {9}r {9})dV (3.49)

where fi_, z_, and ¢ are the transverse and membrane velocity components and p is the

mass per unit volume, and - is the volume of the element. The potential and electrical

energies are defined as

(3.50)

W e = jl{E}r {D}dV

and the work done on the element by extemal sources is defined as

(3.51)

W= _{w}r{Fb}d_:+ _{w}r{F_}dS+{w}r{Fc} - _Vp, sdS (3.52)
tz $1 $2

where {Fb} is the body force vector, {Fs} the surface traction vector, {F_} is the

concentrated loading vector, S 1 is the surface area of the applied traction, S 2 is the surface

area of the piezoelectric material, V is the voltage applied to the piezoelectric, and Pcs is

the surface charge density generated by the piezoelectric effect. The electrostatic energy

results from the charging process of the equivalent piezoelectric capacitance, as described

in Appendix C. In Hamilton's principle, all variations must vanish at the time t = tI and

t = t2. The Hamilton's variational statement may be written in the most general form as
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tz

-{8_}_{o}+{aE:{D}+{_: {a}]d_

+ [.{SwIT{F,}aS- [_:cAS+{Sw:{Fo}--0 (3.53)
Sl $2

Evaluation of Eq. (3.53) leads to the development of the finite element matrices and the

elemental equations of motions.

3.5.2 Resultant Forces and Moments

The stresses of each individual lamina are not necessarily equal, therefore Eq. (3.44)

is not directly applicable since the curvatures are typically unknown and are very difficult

if not impossible to measure experimentally. However the inplane strains and curvatures

of Eq. (3.44) can be related to the applied forces and moments through the static

equilibrium conditions thus making Eq. (3.44) more useful [18]. When working with

laminated composite plates, it is however very convenient to consider the forces and

moments per unit length. Such forces and moments are commonly referred to as the

stress resultants. The stress resultants are determined by substituting Eq. (3.44) into the

following integral

({N},{M})= f"_ ,¢cr_ (1 z)dz (3.54)
,]-h/2 t )k \ '

Substituting Eqn. (3.34) for the k th layer stresses in the above equation and performing

the necessary integration leads to the stress resultants of a composite laminate panel as

_[B][D]IL_J-{M_} (3.55)

where [A], [B], and [D are the extensional, coupling and bending stiffness matrices of

the laminate, respectively, which for an n-layer laminate are defined as

k=l k

(3.56)
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[B]= 2k+l -- Zk

= k

(3.57)

[D]= +,-_
k=l k

(3.58)

The force and moment vectors resulting from the piezoelectric effect are defined as

({N,},{M,})_- -_[Q _ {d}k (1,z)dz (3.59)Ck

3.5.3 Stress Resultants for Small Deflections

The piezoelectric force and moment vectors will be subsequently examined in much

greater detail in Section 3.5.5. Nevertheless, the overall force resultant vector may be

expressed in terms of the nodal d.o.f.'s, and are given here for the linear small

displacement approximation as

{N}=[AIC.,]It,.]{w.,}+[B][Cb][r_]{wb}- {N+}

= [A][B,,]{w,,,}+ [BI[B_]{wb} - {N¢}

= {N,,} + {N b}- {N¢ } (3.60)

Similarly the resultant moment vector may also be expressed in terms of the nodal d.o.f.'s

as

{M} = [BIC,, , ]IT,. ]{w,. } + [D][C bIT_ 1{_ }- {Me }

= [B][B_ ]{w., } + [D]EB b ]{wb} - {Me }

= {M,,}+ {Mb}- {M¢} (3.61)
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3.5.4 Stress Resultants for Large Deflection

The von Karman large deflection strain-displacement relations of Eq. (3.34) are

substituted into Eq. (3.55) to determine the resultant force vector, hence

{2_} = [A]{s° }+ [A]{se°}+ [B]{x}- {N_ }

= [A][C.][r.]{wm}+}[A][O][Co][_]{wb}

+[.BIql[_]{wb}-{u,,}

= [A][B m ]{l#m } + I[A][O][Bo ]{Wb }
2

+[BD. ]{_}- {X_}

={Nm}+ {Nn}+ {Nb}- {N_ }

Similarly the resultant moment vector may be determined as

[&o }+t4 o}+ }

= [BIc_][rm]{_.}+1[_][o][co }
z

(3.62)

+[DIqI_]{wb}-{M,}

= [_D. ]{Win}+½[_IeDo1{,_}+[D][Bb]{wb}- {Mo }

= {Mm} + {MB }+ {Mb }- {M_ } (3.63)

Comparing Eqs. (3.62) and (3.63) with Eqs. (3.60) and (3.61), the resultant stress {NB}

and {M B} are the components due to large deflections.
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3.5.5 Piezoelectric Resultant Forces and Moments

Since each piezoelectric layer contributes to the total force resultant vector a

summation over the range of np piezoelectric layers must be incorporated to account for

each piezoelectric layer. Thus the piezoelectric force resultant vector is defined as

{N¢}= £ _]_+_[Q] {d}kE3kdz (3.64)
k=l k

The lamina stiffness [Q], stress/charge constants {d}, and the electric field {E3} remain

constant for each piezoelectric layer with respect to the 3-direction and are also assumed

to be isotropic in the 1- and 2- direction, thus the indicated integration reduces to

k=l

:_Ql{d}l/h -" [Q]k{d}khk "'" [-QL{d}._h._E_} (3.65)

Furthermore Eq. (3.37) may be substituted for {E 3} producing

{N¢}=-_QI{d}lt h ... [Q]_{d}kh k .-. [-QL{d},,ph,,p_Bc,]{w¢} (3.66)

where

}

[/'_1=II_l{e},/_

Similarly the piezoelectric moment resultant may be expressed as

(3.67)

(3.68)

where

{v,}

I2 1 [-_l_{d}khk(zk+, + zk )[PM]= [Ql{d}lhl(Z2 + Z1) 2

(3.69)

(3.70)
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3.6 Element Matrices

3.6.1 Introduction

Evaluating the terms in the Hamilton's variational statement of Eq. (3.53) results in

the finite element matrices. Variation of the potential and kinetic energies leads to the

development of the element stiffness and mass matrices, respectively. During this

investigation, body and concentrated forces are neglected.

3.6.2 Linear Stiffness Matrices

The finite element linear stiffness matrices will be determined first by evaluating the

potential energy terms of Hamilton's variational statement Eq. (3.53). Thus the potential

and electrical energy terms for the k th layer of Eq. (3.53) may be expressed as

f({8_}T{o}-{Be:{Dl)_
iz

where the first integrand represents the strain energy and the second integrand represents

the electrical energy due to the polarization properties of the piezoelectric in the 3-

direction only. Thus by applying the stress resultants of Eq. (3.54), the variational energy

becomes

JF_

jIl_: }_{N}+{8_}_{M}- (3.72)
A,- lh/_/_2(6E3k )D3k dz ]d'4

The first term of Eq. (3.72) is evaluated by substituting the force resultant vector of Eq.

(3.60) which yields

_{6_ 0 }r {N}dA =
A

_{66 o }r ([A]{go }+ tB]{a:}, {N# })dA
.4

T T T

= _{_m} [r.,] [c.,] ([A][Cm][T.,]{w.,}
A

+[B][q][T_]{_}-[P.]{e_})44 (3.73)
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Thusby applyingthe resultsof Eq. (3.73),the first term of Eq. (3.72)maybe expressed

in theform

.l'{sw,,}_[B,,,IT(IA][_,,]{-w,,,}+[B][.B,,]{w,,}+[P,v][.B+]{,,,,_})44
A

(3.74)

Similarly by substituting the moment resultants of Eq. (3.61), the second term of Eq.

(3.72) becomes

.1"{8,<}T{M}_= .1"{8,<}T@]{_°}+[D]{,<-}-{M+}_
A A

=..l'{8-w,_}_[r_]'[q]'([B][C.,][T.,liw.,}
A

+ [D][Cb ][Tb ]{wb }-[PM ]{Esk })dA (3.75)

By collecting terms, Eq. (3.75) can be simplified as

I{fiwb}r[Bb]r ([B][B.,]{w.,}+[D][Bb]{Wb}+[Pus][B+]{w+})dA (3.76)
A

The third term of Eq. (3.72) is evaluated by substituting Eq. (3.47) and Eq. (3.14) for the

electric displacement density as

/2
A

II£_i_+'[(6E3s<){{d}r[-Q]k({e°}+z{zc}-E3k{d}k)+_.33kEsk}]dz_A (3.77)
A Lk=l

Again integration of the piezoelectric lamina with respect to the thickness may be

simplified by considering the geometric material assumptions previously mentioned.

Thus Eq. (3.77) reduces to

- ,,p

- (6E3k){d}_" [Q]k {d}k E3_h k + (6E3k)633 k Esk h k ]]dA (3.78)
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By considering the laminate and utilizing matrix notation, Eq. (3.78) may be expressed as

A

+/_,}_[B,]_';]-_'DG}]aA
where the matrices [_] and [7] are defined as

(3.79)

;]G]-- • ,;_ :
"'" £3inp

(3.80)

[r]=
-{a}_[_],{a}, ... o

: {d}f[_]k{d}k :
0 --. W};,[_].,{d}.,

(3.81)

Thus combining Eqs. (3.74), (3.76), (3.79) yields Hamilton's variational statement, less

the kinetic energy terms, which can be expressed as

j'[{aw.,}_[_ 1_[A][B.]{_.} (3.82a)
d

T+{,_m}[Bo]T[B][B_]{wb} (3.82b)

+{aw.,:[_.,]_[P_][B_]G } (3.82c)

(3.82d)

+ {0%}_[B_]r [D][B_]{wb} (3.82e)

(3.820

32



+(8_+)"[B+]' [P_]T[n_]{w_}

+{<_,,,,)'b+]'(h,J-[_;])(w+}_ :o

The element stiffness matrices are determined from Eq. (3.82) and

matrix form of

_w,,,k/[k.,_]t_.,][_.,+]14_,,,
_+JL[k+_][_,.,][k+]Jl.w+

where the corresponding linear stiffness matrices are

[km]= _[B.,]_[A][B.,]dA
A

[k.,_]=.I'[Bm]'[BI[B_]_
A

[km+]:fEB.,]TdAEP.I[B+]
A

[k_.,]=j'[n_]'[s_][s_.,]aA
A

A

A

[_+,,]:[8+]'[s,.]"lIB.,]_
A

[k,_]:[B+],ts>,_],ItB,}_
A

(3.82h)

(3.82i)

may be cast into a

(3.83)

(3.84)

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

[_+]:[B+]'(H-[_;_A
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3.6.3 Large Deflection Equations

The nonlinear element stiffness matrices are determined by following the same

procedure outlined for the linear stiffness matrices in Section 3.6.2. In order to determine

the nonlinear stiffness matrices, the yon Karman large deflection strain must be included

in the Hamilton's variational statement. The resulting variational potential and electrical

energy statement, including the von Karman large deflection strain, may be expressed as

--Z k+l[(_E3k){{d}Tk[-Q]k{_O}-l-Z{_}--{d}kE3k -[-E3k_-'33kl]dz]dA (3.93)
k=l

Considering the stress resultants of Eq. (3.54) and substituting the results into the first

integrand of Eq. (3.93) yields

Since the membrane

variations in Eq. (3.94) becomes

I[{Ss° }r {N}+ {Str}r {M}}tA (3.94)
A

strain and curvatures are independent of the plate thickness, the

{8_°}T={Sw.,IT[_.,IT+{SWbIT[_oy[OY (3.95)

{rite} r = {&% }r [Bb ]r (3.96)

where the following relation is utilized

:.o1:.0= 1:.o
= [O][B o ]{6w b } (3.97)

The second integrand of Eq. (3.93) may be similarly evaluated by substituting the von

Karman large displacements of Eq. (3.34) and performing the variational operation

described above in Eqs. (3.95) and (3.96). Evaluation of the linear terms follows the
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procedure outlined in Eqs. (3.78) and (3.79).

(3.93) becomes

Hence the variational statement of Eq.

I[{6w., } [B.,] ([A][B.,]{w.,} 2
A

+ [B][_1{_}- {N+})

[nol_[0]_([A][B.,1{_.,)+½[AIO][_o1(_}+ }

+ [BI[B b ]{w b }- {N¢ })

+{8_}_[B__ 1] ([n][_.,]{w.,}+ [B][O][Bo]{_,_}

+ [D][B_]{w_}- {Me})

+/,,,,,,+ft.,+1"t-,>,,,r(t_,,,l_w,,,_+½tolt.,o1_-,,,,,,_)

+(8,,,,,+}'[_,]' [P_,1'[.8,_1{,,,,,,_)

+ {6w¢ }r [Be ]r (N- _3; ]){we }}/.4=0 (3.98)

The variational statement contains identical terms which lead to the linear stiffness

matrices, however nonlinear stiffness matrices resulting from the von Karman large

deflection will appear and are indicated by the inclusion of the slope matrix. Thus the

variational potential energy statement in Eq. (3.98) may be written as
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Note that the linear expressions indicated in Eqs. (3.99a, c, d, i, k, m, o, p) are identical to

those of Eqs. (3.82a, b, c, d, e, g, h, i) respectively. The remaining expressions which

contain the slope matrix will lead to the nonlinear stiffness matrices. The following

transformation relationship is applicable for any force resultant vector and will be utilized

to further simplify expressions for the nonlinear stiffness matrices. Thus the product of

the transpose of the slope matrix and any force vector may be expressed as

likewise

[o]r{Ni}= W,y w,, [N,yJi cNyw, y+N,:yW,,j i

Ny JicW, yj Nyw, y+Nxyw, x}i

(3.100)

(3.101)

Thus by applying Eqs. (3.9) and (3.32), the above relation yields

[8] r {N, } = [N, ]{8} = [N, ][C o ]{a} = [N, ][B e ]{w b} i =b,m,O,¢ (3.102)

Equations (3.99e) and (3.99h) may be manipulated into a symmetrical form.

(3.99e) becomes

T T

{_,}__[_o][o] [AD.]{w.}dA=
A

½{e_}_I[_o1_[oyLIAI[B.]{w.,}+[N.][eo]{wb}]aA

and Eq. (3.99h) becomes

{awb} _ I[Bo ]r [oy [P. 1[_¢ ]{w+ }dA=
A

T T

Thus Eq.

(3.103)

(3.104)
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where the membrane force vectors of Eqs. (3.62) and (3.67) are used. Combining Eq.

(3.103) with Eq. (3.99b) the resulting expression becomes

{swb} [Bo

+ } {_wb }r[Bo ]r[N m ][B0 ]{wb }

1 r r -1
+--{SWm} [Bin] [A][O][Bo]{wb} dA (3.105)]2

The above relationship may be expressed in terms of the first order nonlinear stiffness

matrices as

} ({6w b }r [nl b., ]{Win} + {6Wb}r [nl Nm]{wb } + {6Win}r [nl, b ]{Wb})

where the first-order nonlinear element stiffness matrices are given by

(3.106)

[nl bm] = I[Bo ][el F [A][Bm ]dA (3.107)
A

[nl,m ] = I[Bo]r[Nml[Bo]dA (3.108)
A

[nlmb]= ]da (3.109)
A

Equation (3.104) may be expressed as

where

l--({SWb}r[nlb,]{w, }+ {&v b}r[nlN_]{wb})
2

(3.110)

[nlb_ ]= I[Bo ]r [o] r dA[P N][B_] (3.111)
A

[nl N¢1= - I[Bo Ir [N_ ][B o ldA (3.112)
A

Similarly Eq. (3.99g) may be expressed symmetrically utilizing the bending force vector

and adding it to Eq. (3.99j), hence
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1 {SWb}r [B ° ]r [N_ ][B o ]{w b }+

l{8wb [Bby [B][0IBo+ (3.113)

Equation (3.113) can be expressed as the first-order nonlinear stiffness matrix due to the

laminate coupling matrix [B] and large deflection effects as

l{fiwb }r [nl ]{w b } (3.114)NB

where

[nlNB ]= I([Bo ]r [O]r [BIB b 1+ [B ° ]r [N b ][Bo ]+ [B b]r [B][O][B ° ])t<4
A

The first-order nonlinear

(3.115)

stiffness matrix due to electromechanical coupling can be

determined from Eq. (3.99n) as

where

- l{fiw¢ }v [n1¢_]{wb }
2

(3.116)

[nl¢_ ]= [B e ]r [PN ]r I[O][B ° ]dA (3.117)
A

The second-order nonlinear stiffness matrix is determined from Eq. (3.99f) as

! {6wb}v[n2b]{wb}
3

where

[n2_]= 3 _[Bo]r [0]_[A][OIBo]d4

combining all the stiffness matrices the complete variation statement becomes

(3.118)

(3.119)
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3.6.4 Mass Matrices

The variation of the kinetic energy terms of Eq. (3.43) leads to the element mass

matrices, which consist of mechanical quantities only, since the electrical d.o.f.'s do not

have an equivalent inertial analogy. Thus the variational kinetic energy may be written as

J'p({e_}_{w}+{_}_{,_}+{o_}_{,@,_:
F

=-j'p({e_}T{_}+{8.}_{_/}+{Sv}_{_;})d_

=--({6Wb }rfmb ]{@b} + {_Wm}T[mml{w=}) (3.122)

where the element mass matrices are given by

[m b ]= [r b]r y{H_ }hp(x, y)LHw ]_[Tb ] (3.123)
A

[m']=[Tm]r(_{Hu}hp(x'Y)LHuJ+_{Hv}hp(x'y)lHv]]dA[T"]A (3.124)

3.6.5 External Force Vector

In completing the variations indicated in the Hamilton's variational statement of Eq.

(3.43), the work done due to external forces, body forces and surface traction's were

assumed negligible, however the electrostatic work due to the externally applied voltage

must be included. The electrostatic work done as, described in Appendix C, is given by

Eq. (C.23). Since the space charge within the volume of the piezoelectric is zero, only a

surface charge accumulates on the electrode surfaces, hence the virtual electrostatic work

done can be expressed as

6Vp,dS =
$2

where

j'{6w¢}r{pcs}dA =-{6wo }r{p_ } (3.125)

$2

{p_ } = - y{p_ }dA (3.126)
A
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3.6.6 Element Equations of Motion

The element equations of motion may be formed by substituting Eqs. (3.120), (3.121),

and (3.125) into Hamilton's variational statement Eq. (3.53), and collecting terms,

resulting in

Ei°-o +I[+++.+1°ilo°o°"E I+°!Joo°
1

+p
2

-nl NB + nl N,,, nl b.,

nl., b 0

nl cb 0
nl+l rwb]tp+tOlIi. --p.,

• 0 _l)l.w+ tP+ J

(3.127)

3.7 System Matrices

The element equations of motion Eq. (3.127), are a set of equations which describe

the fully coupled structural and electrical properties. Application of Eq. (3.127) requires

the implementation of an assembly procedure in accordance to the prescribed electrical

and structural boundary conditions. The assembly process for the structural stiffness can

be shown symbolically as

[K] = _-_+[k] (3.128)

where the global stiffness matrix [K] has dimensions m x m for m structural and electrical

d.o.f.'s and the element stiffness [k] is of size (24+np)x(24+np). The assembly procedure

can be visualized by first starting with a null global stiffness matrix, then subsequently

adding to it [k] of each element until all the elements are considered. Assembly of the

mass matrix is accomplished using an identical procedure, however special attention is

required for the piezoelectric elements and will be subsequently discussed in greater

detail. Assembly of Eq. (3.127) yields the following fully coupled system of equations
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[_ °]f_+ +,r N2o,L_j([£71+'r_l

where the system matrices and vectors are

-[M,_]
[M]= [0]

[o11
[M,,,]_I

;]
(3.129)

(3.130)

[_ ,_r[_,]l

(3.131)

(3.132)

[-,<,.,]=IIK_] [K,,.ll

[N1]= -[N1 N" + Nl_v,,, ]
[Nlmb ]

E I  1=EES o [°ot

[N1 b,, ]7

[0] J

(3.133)

(3.134)

(3.135)

(3.136)

[N2] = -[N2b[0]] [0t[0 (3.137)

(3.138)

(3.139)
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If the given structurecontainsseveralpiezoceramicpatches,and eachpatchconsists

of n finite elements (Figure 3.4), the assembly process must be modified only for

elements which contain piezoelectric material. The prescribed electric boundary

conditions require that the electrode be maintained to an equipotential, therefore each

patch must consist of one electrical d.o.f, and can be simply assembled as

{W¢}={{w_} 1 ... {w¢}k... {We}N}r (3.140)

where N is the number of patches and {we }k as defined in Eq. (3.35) is a npxl vector

representing np number of piezoceramic layers. The solution for the assembled system of

equations in Eq. (3.129) may be obtained by utilizing the standard finite element solution

procedure. Thus during the solution process there is no need to distinguish between

structural or electrical quantities other than known or unknown quantities.

3.8 Solution of Static Sensor Equation

To determine the voltage produced by a single piezoelectric patch bonded to a panel

subjected to a static uniform distributed load, Eq. (3.129) may be partitioned as

[M]{W} + ([K_] + 2 [N1]-1 [N1N_ ]+ 1 [N2]){W}

+ ([K_# ] + l[Nlw¢ ])W_

([Kc_]+I[Nx_,,]I{W}

={P_} (3.141)

+ K¢W_ =0 (3.142)

where Eq. (3.142) may be solved in terms of the unknown voltage as

W+ =-Ko-i([Kc,,,,]+I[NIow]){W} (3.143)

where {P0 } = 0 since there is no externally applied voltage to sensor. Furthermore Eq.

(3.143) may be substituted into Eq. (3.141) resulting in a system of equations which may
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be solvedfor the structurald.o.f, in responseto the structuralloading. The structural

d.o.f,maybesubsequentlyappliedto Eq. (3.143)in orderto determinethevoltage. Since

the systemunderconsiderationis static,the inertial termswill be identically zero. In

addition sincethere is no externallyappliedvoltage,thefirst-ordernonlinearelectrically

coupledstiffness[N1N¢] will alsobe identicallyzero. SubstitutingEq. (3.143) into Eq.

(3.141)yields thefollowing systemof equations,which mustbe solvedfor the structural

d.o.f,dueto the staticloading

1 K
([K.,] + _[N2] + I[N1]- [K.,+ IKo _,_[K_ ]-' [Nlow ]

1,- -,---,1 -,

-2[Nlw:[K¢F.'[Kow]-4[NIIe_K¢.F'[NI+I]){ W} = {Pw} (3.144)

The Newton-Raphson iterative method is used to solve the nonlinear system of equations

of Eq. (3.144). Recall that the first- and second-order nonlinear stiffness matrices are

functions of the unknown displacements.

3.8.1 Newton-Raphson Iteration Method

The Newton-Raphson [20] iterative method is used to solve Eq. (3.144) by solving for

an incremental deflection which is given by

{W},+l = {W}i-b {A_/V}i (3.145)

The iterative procedure is carried out until the incremental deflection {AW} approaches

zero resulting in a converged static deflection {W}.

Equation (3.144) can be written as a function, which may be expressed in terms of a

Taylor series expansion thus
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{T(W)} = ([Kw] + l[N2] + I[N1]
3 2

- [xwoIx., _l[x_ ]-½[xwo Ix, tl[Na_ l

I[N IK¢] -I1[Nlw,lx,]-l[x, ]- lw, [Nlc_]){W} - {P_} = 0
2 w

The truncated Taylor series expansion is represented symbolically as

Differentiation of Eq. (3.146), referred to as the tangent stiffness, results in

dT(W) = d[([Kw] + l[N2] + I[N1]
3 2

(3.146)

(3.147)

I [NI_K_a[K_]-I[NI_IK_I[NI_](W}2
(3.148)

The indicated differentiation of the tangent stiffness in Eq. (3.148) is accomplished by a

term by term evaluation, beginning with the first term, which is the linear structural

stiffness matrix. Since the linear stiffness matrix is constant with respect to the structural

d.o.f., the differentiation is a trivial operation resulting in

a([xw]{w})=[xw]{aw} (3.149)

Differentiation of the first-order nonlinear stiffness matrices invokes a two-step approach

since [N1] is comprised of [Nl_v,,,],[Nlb.,],[Nl,,,b ], and [N1Ns ]. The first step will deal

with [N1Nm],[Nlbm],and[Nlb,,,], and the second step will involve the differentiation of

[N1Ns ]. The differentiation must be performed on the element level stiffness matrices.

thus [nl] is expressed as
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([nl]){_}=t,L[[nlm_l][o] _., (3.150)

Thus the derivative of [N1] can be performed on the partitioned element level definitions

given in Eq. (3.150) as

and

d([nlNm]{Wb }) + d([nlb,,,]{w m}) (3.151)

d([nl., b]{w b}) (3.152)

Applying the definitions expressed in Eqs. (3.107) and (3.108) to Eqs. (3.151)and (3.152)

yields

l([nlNm ] + [nl,,,b ]){Wb} + l[nlb.,]{Wm} = 1 [T,,,]r I[C,,, ]r [A][O][C o]{a}dA
A

where [C o]{a} = {0}.

I[Co] [01 [A][C.,I{b}dA (3.153)
A

Performing the required differentiation of Eq. (3.153) yields

½17;,,,1_[[c,,,]_[Al([dO]{O},[0]{d0})aA
A

T T

.[r_]__[CO][ao] [Al[C.,]{b}_U
A

T T

.[r_f f[co][o1[A][C.,]{db}dA
A

(3.154)

Simplification may be achieved in the above equation by considering the following

relations

t[ao]{o}= o dw,. = d.,,._,x
.dw, y dw, x J I'w'y ) dw, y W,x +dw, x w,y

(3.155)
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Therefore

[o {[o]{ao}= _,, =
dw, x W,x }
dw, y w,x

w,x +dw, x W_y

[do]{o}=[o]{ao}=[o][co]{da}

(3.156)

(3.157)

Thus Eq. (3.154) may be cast in the following form

[T.,]T_[G, lr [A][O][q]dA{da}
A

+[_]_f[co]:[N.,][Co]{d_}dA
A

T T

+[_]_.[[co][o][A][Co,]dA{db}
A

Thus the differentiation procedure can be summarized as

(3.158)

d{(1 [nlN., ] + [nl., b]]{w b}}+ d(l[nl.,b ]{w b})

= [nl., b]{dw b} + [nl_,.,]{dw b} + [nlbm]{dw,. } (3.159)

The second step used to differentiate [NI_B ] uses a similar approach involving Eqs.

(3.114), (3.99g), and (3.99j) resulting in

T T[nlNs]{Wb}=[Tb] r I[Co] [0] [B][Cb]{b}dA
A

+½[_1_I[C_]_[BI[0][col{0}dA
A

Performing the indicated differentiation yields

T T T T

[T_]_[[Co][aO][_][G]{a}aA+[_y [.[Co][0] [B]EG]{aa}aA
A A

+[T_fI[G]_[B][OI{aO}aA
A

48
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andby usingtherelationsin Eq. (3.157)yields

[_]_[.([colT[N_][Co]+[Co]T[OI_[BIcb]
A

+[c_]T[B][o][coNA{da}

which may be summarized as

Combining the results of Eqs. (3.159) and (3.163) yields

d( I [N1]{W}) = [N1]{dW}

(3.162)

(3.163)

(3.164)

' Similarly, differentiation of the second-order nonlinear stiffness matrix may be performed

using the element expression in Eq. (3.119) and substituting [C o ]{a} = {0}, thus

1[n2b]{_b}: _[T_]_ECo[EO]_EA]EO]{O}dA

Performing the indicated differentiation operation produces

A

which may be expressed as

(3.165)

= [n2b]{dwb} (3.166)

(3.167)

The next term in Eq. (3.148) involves differentiation of the linear electrical-structural

coupling stiffness matrices, which is a trivial operation since the stiffness matrices are

constant with respect to the structural d.o.f., hence
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d_Kw¢IK¢_l[Kq_]{W})= [Kw¢IK_l[Kq)w]{dW} (3.168)

The next term of Eq. (3.148) involves differentiation of the nonlinear electrical-structural

coupling stiffness matrix, which is a function of the bending displacement, thus the

differentiation is indicated as

d(+[Kw¢iK¢_l[Nlcw]{W})

which can be expressed in terms of the element level matrices as

 Lk, ]J L[o]J)lw.,;'

(3.169)

(3.170)

by recalling Eq. (3.117), the first order nonlinear coupling stiffness term is defined as

l[nlob]{Wb} = [Be]r [pN] r I[O][ColdA[Tb]{wb} (3.171)
a

since it was previously shown that the linear stiffness matrices are constant matrices they

are not affected by the differentiation indicated in Eq. (3.169). Thus differentiation may

be accomplished by differentiating Eq. (3.171), which results in

[B¢_[pu] r I[dO][ColdA[Tbl{wb} +[B¢[[PN] r I[O][ColdA[Tb] (3.172)
A A

by using the fact that {a} = [Tb]{Wb}. The relations of Eq. (3.157), Eq. (3.172) may be

reduced to

[B# ]r [p_ ]r I[0][Co ]dA[Tb ] (3.173)
A

Thus the differentiation indicated in Eq. (3.169) can be summarized as

[K_e IK _ _ I[NI ¢w]{dW }
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Thenext termof Eq. (3.148)requiringdifferentiationis thematrix transposeequationof

Eq. (3.169)

d(_[Nlw¢IK(b_I[Kcw]{W} 1
(3.175)

thus neglecting the linear stiffness matrices differentiation of the first order nonlinear

coupling matrix is simply the matrix transpose of Eq. (3.172) and is given by

[Tb]r I[Co] [dO] dA[PN][B¢]{Wb} 2 I[Co] [0] dA[PN][B_] (3.176)
A A

thus differentiation results in

(1IN 1 1 1
d 1._IK_]- [K#]{W} =[NL, IK¢]- [K#]{dW} (3.177)

The next term of Eq. (3.148) involves the product of two nonlinear coupling matrices

d(I[Nlw¢IK_}I[Nlc, w]{W}) (3.178)

which is expressed at the element level as

![["Ib¢]][; ]-l[[/_1#_f ]4;b_ (3.179)
4L [0]jr.,J L [0lJ[WmJ

This results in a differential with respect to the bending displacement only, resulting in

d(l[nlb, Ik,}i[nl#]{Wb}) (3.180)

where

T T

[nL¢]=ITs1_ ;[Co] [01 dA[PNI[Be]=[nl#[ (3.181)
A

Once again the linear stiffness matrix is constant and unaffected by differentiation. Thus

the differentiation is performed on the product of the first-order nonlinear stiffness

matrices only resulting in
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A A

which is simplified by employing the relations of Eq. (3.157) resulting in

d(l [nlb_ ][k_ ]-l[nlc, b ]{Wb}l =3 [nlb¢ ][k_ ]-i[nlc, b ]{Wb}

Reassembling the system matrices yields

d(l[Nlw, IK¢ ]-1[NI_ ]{W}) = 3 [N1w¢ _K_ ]-i [NI_ ]{dW}

(3.182)

(3.183)

(3.184)

and collecting all terms yields the tangent stiffness matrix given by

= [Kw]+ [N21+ [N1]-[K.,+ [K¢ ]-I [K_]

-[Kw¢ [K¢ ]-' [K_ ]-[Nlw+ ][K¢ 1-' [K_ ]--_ [N1 >_+IK+ ]-I [NI_ ]

Thus Eq. (3.147) becomes the nonlinear static equation where

(3.185)

[S,:,o.]{ArV}= (3.186)
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Theincrementalright-handsidevectoris

{APw}= {Pw}-([Kwl+I[N2]+I[N1]
3 2

- [X_ I x, 71 [X_ ]-1[X_¢ IX, ]-1[N1¢_ ]

I [NI  IK, tl[X ]-a[NI oIx t'[NI, b{W} (3.187)2

In the Newton-Raphson iteration, the initial nonlinear stiffness matrices are determined

from the linear static displacements. Once the incremental load vector and tangent

stiffness matrix are assembled, the Newton-Raphson tangent equation shown in Eq.

(3.185) is solved to determine {APw}, which is subsequently used to update the static

deflections. During the iterative process, the incremental load vector and the incremental

deflection will approach zero, resulting in a converged deflection solution.
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Piezoceramics

Composite Panel
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Fig. 3.2 Geometry of a laminate with embedded piezoceramics
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CHAPTER IV

EXPERIMENTAL SETUP

4.1 Introduction

It was desired that a typical representative aircraft structural panel be tested, and the

experimental results compared to the finite element analysis. Therefore a 14"xl 0"x0.040"

aluminum panel was selected for the experiments. For a panel of this size, it was much

easier to construct a test fixture that achieves approximate clamped boundary conditions

as opposed to simply supported boundary conditions.

4.2 Establishment of Clamped Boundary Conditions

A clamping fixture consisting of two aluminum plates of size 25"x20"xl", with a

rectangular 14"x10" hole machined out of the center, was manufactured to achieve the

clamped boundary conditions as shown in Figure 4.1. The rectangular cut-out was

centered such that there was a minimum of four inches of clamping surface around the

perimeter of the 14"xl 0" panel cut-out. The mating surfaces of the clamping fixture were

measured to be within ___0.002" flatness. A series of 26 pilot holes for 1/4" cap screws

were drilled in an evenly spaced pattern 1/2" beyond the perimeter of the panel cut-out.

Another series of 8 pilot holes were spaced evenly around the outer perimeter of the

fixture 3/4" from the edges and sized to accommodate the 3/8" cap screws. The 0.040"

test panel specimen was cut to 25"x20" so as to fit the overall clamping fixture. Two 1/4"

alignment pins were placed at opposite corners to assure repeatable and consistent

assembly. Wooden support blocks were placed on the bottom of the panel to support the

clamping fixture in a vertical fashion. The clamping fixture was assembled with grade-8,

high strength hex head cap screws, washers, and nuts. The 1/4" and 3/8" cap screws were

tightened to 15 and 20 ft-lb respectively in 5 ft-lb increments. The tightening sequence

followed is depicted in Figure 4.2.
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4.3 Piezoelectric Wafer Preparation

A single 2.5"xl.5"x0.010" piezoelectric wafer was bonded to the panel 3/4" from the

boundary, symmetrically on the centerline (see Figure 4.3). Before the wafer can be

attached to the panel, electrical leads must be attached to the wafer electrodes to facilitate

the instrumentation. Since the piezoelectric wafer was polarized in the 3-direction the

electrodes are on the top and bottom surfaces. The piezoelectric is a polarized dielectric,

therefore if any residual electrode material is attached to any of the edges in the 2- or 3-

direction, a complete or near short circuit will adversely affect the piezoelectric process,

if not completely inhibit it. In addition, since the electric field is the gradient of the

electrical potential as shown in Eq. (3.36) a very large electric field, or potential gradient

will exist. This condition could cause dielectric breakdown of the piezoelectric resulting

in a short circuit condition. This adverse condition may be minimized if the piezoelectric

edges are straight and perpendicular. To assess the quality of the piezoelectric edges the

resistance and capacitance can be measured with a high quality multimeter and

comparing the results to the manufacturer's specifications. If an ill-conditioned edge is

detected, as indicated by a low resistance or capacitance, then the edges may be gently

scraped or sanded with a very fine machinist wet abrasive paper. If the specified

resistance cannot be obtained then the piezoelectric wafer should not be used.

4.4 Piezoelectric Lead Attachment

Electrical leads must be soldered to the electrodes of the piezoelectric wafer.

Traditionally to obtain a good electrically conductive and mechanically reliable solder

bond both the substrate and the lead being attached must be raised to a temperature

greater than the melting point of the solder. This technique will adversely affect the

piezoelectric wafer since depolarization will occur if subjected to temperatures in excess

of the Curie point which is 365°C for PZT-5A [21]. The depolarization may occur

locally within the piezoelectric, thereby altering the overall charge constants. A complete

depolarization rendering the piezoelectric inoperative is unlikely, therefore extreme care
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must be taken to assure that the piezoelectric properties are not altered during the

soldering process.

The piezoelectric wafer is a polarized dielectric, and since thermal conductivity is

proportional to electrical conductivity [22], the piezoelectric wafer is a thermal insulator.

Hence the heat applied during soldering will not readily dissipate through the wafer. On

the other hand the electrodes are nickel and are highly conductive, however since they are

only 0.00005 - 0.0002" thick their thermal capacity is very small. The only other thermal

member remaining is the lead to be attached. The lead size should be selected to

minimize its thermal capacity so that it does not act as a heat sink and direct the heat

away from the wafer, thus increasing the soldering time. The leads used were copper foil

2"xl/16"x0.001 ". A temperature selectable thermostaticly controlled soldering iron fitted

with a small pencil tip was used and set to 360°F. The electrodes of the piezoelectric

wafer were cleaned with alcohol and a small mount of liquid flux applied. The lead was

cleaned, fluxed, and tinned with solder. After the lead cooled additional flux was applied

to the lead and placed on the substrate, then with light pressure, a tinned soldering iron

was placed on top of the lead until the solder between the lead and electrode melted. The

soldering iron was removed within five seconds as recommended by the piezoceramic

manufacturer.

4.5 Piezoelectric Wafer Bonding

The piezoelectric wafer attachment is carried out in a two step process to ensure both

electrical isolation and mechanical bonding. A strain gage epoxy adhesive system was

used to bond the wafer to the aluminum panel [23]. The electrical isolation is obtained by

applying a thin layer of adhesive to the panel prior to the application of the wafer.

Initially the panel is cleaned with alcohol to remove any dirt and oil. The piezoelectric

location was measured and marked within 1/64" using a sharpened mechanical lead

holder. The scribe lines were extended three inches beyond the actual location for future

reference since excess adhesive will cover the lines as indicated in Figure 4.4. Mylar
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adhesive tape was applied 1/16" beyond the scribe lines creating a rectangular mold

which will be filled with adhesive. Additional mylar tape was used to cover and protect

the scribe lines remaining outside the frame, see Figure 4.5. The framed area was wet

sanded with alcohol and abrasive cloth, wiped clean and treated with a micro-abrasive

metal conditioner. Next a semipermiable Teflon cloth and mylar sheet were cut and

placed over the area to be glued and one edge was attached to the panel with mylar tape.

The adhesive is mixed and a thin layer is applied to the framed area, the Teflon cloth was

placed over the adhesive and covered with the mylar sheet and a vacuum pad was

attached and activated. The vacuum pad will provide a uniform pressure permitting

excess adhesive to penetrate the Teflon cloth. The adhesive was permitted to cure

overnight since the minimum curing time was six hours.

Once the adhesive cured the vacuum pad was removed along with the mylar tape.

The Teflon cloth provided an abraded surface texture however the adhesive should be

uniform without any voids or bumps. Using the original exact scribe lines reapply the

mylar tape to create a frame which will be exactly the size of the piezoelectric wafer. The

adhesive surface and the piezoelectric wafer were cleaned with alcohol and a thin layer of

adhesive was applied to the existing base coat on the panel. The piezoelectric wafer was

placed on the adhesive and covered with a thin layer of foam and the vacuum pad placed

over it and allowed to cure over night. It should be noted that the electrical lead on the

wafer should be as thin as possible including any residual solder. If however the

piezoelectric wafer is very thin, and subjected to an excessive vacuum loading, the lead

may crack the piezoelectric wafer. For a flat horizontal application, only a slight vacuum

loading is required, to ensure a uniform distributed load during the curing process.

4.6 Uniform Distributed Loading

To assess the static piezoelectric sensor a uniform distributed load was applied to the

panel. However, since piezoelectrics cannot sustain a static charge the uniform

distributed load must be applied instantaneously. To achieve the instantaneous load the
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test clamping fixture was modified to include a 14"x16"xl/4" plate on one side, thus

creatinga vacuumchamber. The vacuumplate wasattachedusingthe existing fixture

bolts and wassealedwith a vacuumgrease. Threefittings facilitateda vacuum pump,

vacuumgage,and a quick-releaseball valve asindicatedin Figure4.6. To conductthe

staticsensorexperimentthe vacuumwasappliedandthe maximumplate deflectionwas

measuredusing a dial indicator. Oncethe desireddeflectionwas achievedthe vacuum

washeldby closingthevalve andnotingthe correspondingpressure.With theplate in a

deformedstate,the residualchargewasallowedto dissipate. At this time, the ball valve

wasopenedquickly and the sensorvoltagewasmeasuredby recordingthe time history

usingafastFourieranalyzer.

4.7 Material Properties

The experiments conducted for this research were performed on a rectangular

isotropic aluminum panel with a single bonded piezoceramic patch. Various static and

dynamic experiments were conducted in order to obtain data that was compared to finite

element analysis which will be discussed subsequently in Chapter IV. The piezoceramic

used herein was PZT-5A manufactured by Morgan Matroc [21]. Table 4.1 provides the

physical material properties. The physical properties of the aluminum panel used for the

experiments may be found in Table 4.2.
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PZT-5A

ChargeConstants d31 -171e-12 m/V

Permittivity Er 1700

Density p 7700 kg/m 3

Length L 0.0762 m

Width W 0.0381 m

Thickness h 254e-6 m

Young's Modulus E 6.9e 10 N/m 2

Poisson's Ratio )I 0.31

Table 4.1 Piezoceramic Properties

Aluminum Panel

Density ,o 2702 kg/m 3

Length L 0.356 m

Width W 0.254 m

Thickness h 1.02e-3 m

Young's Modulus E 6.1 e 10 N/m 2

Poisson's Ratio v 0.31

Table 4.2 Aluminum Panel Properties
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Fig. 4.2 Bolt tightening sequence
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CHAPTER V

NUMERICAL AND EXPERIMENTAL RESULTS

5.1 Introduction

The verification of the linear finite element model was conducted by considering a

simply supported square panel. Initially, an isotropic panel is considered where the

maximum transverse deflection was compared to the classical solution. Next a bonded

piezoelectric patch is included and the predicted sensor voltage resulting from a uniform

distributed load is compared to a voltage determined using a classical solution method.

The large deflection finite element model was verified by comparing results to a single

mode classical solution for moderately large deflections of a square clamped plate.

Subsequently, finite element results are presented and compared to experimental results

obtained from a clamped rectangular panel. Results include static and dynamic sensor

applications and dynamic actuation.

5.1.1 Static Small Deflection

In order to verify the finite element model formulation, a simply supported isotropic

panel subjected to a uniformly distributed load is considered. The small deflection

approximation is used in the finite element formulation. The Navier solution for a simply

supported rectangular plate is computed and used to validate the finite element model.

The Navier solution for the transverse deflection of a simply supported plate under a

uniform load is given by [24]

16qo  1
: _6_-D'm=' "=' mn ( m2-_-+b2j_2 sln_-_) sin (5.1)

where rn = 1,3,5,--. oo and n = 1,3,5,... oo. Thus the maximum deflection can be found by

a/2 and y = b/2. Figure 5.1 provides the finite element analysis non-substituting X

dimensional maximum deflection compared to the classic Navier solution of a
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10"xl0"x0.040" simply supported plate subjected to uniform loads. The accuracy of the

finite-element, small-deflection formulation has thus been established.

5.1.2 Static Large Deflection

To verify the large deflection finite element model formulation a clamped square

panel subjected to a uniform distributed load is considered. A single mode classical

solution for moderately large transverse deflections is given by Cilia [25] as

_wH_ 3 + 0.2522 w----L1= 0.0001333 q°a4 (5.2)
_,hJ h Dh

where w,,,,= = 2.5223wH, h is the panel thickness, D is the bending rigidity, qo is the

uniform distributed loading, and a is the width of the panel. Comparison of the large

deflection finite element formulation non-dimensional displacement and the single mode

solution is shown in Figure 5.2. Excellent agreement was obtained for the large defection

formulation, thus establishing the accuracy of the finite element model.

5.1.3 Static Sensor

In order to validate the static sensor formulation an isotropic plate with a single

piezoelectric patch bonded to the surface is considered using a classical voltage solution

method. The classic solution applies Gauss's law to determine the charge enclosed within

a surface and is given as

q= _D.da (5.3)
s

where D is the electric displacement density and da is the differential normal vector of

the surface S. However, the space charge within a dielectric is identically zero, thus Eq.

(5.3) cannot be directly applied to piezoceramics. Since the charge generated by the k th

piezoceramic layer is accumulated at the electrodes (top and bottom surfaces of the k th

piezoceramic layer), Eq. (5.3) may be expanded to determine the effective charge such

that
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qk = _ II D3dxdy + II D3dxdy (5.4)
\Sl(z=zk÷l) S_(z=zk)

Substituting Eq. (2.12) into Eq. (5.4), setting the applied electric field to zero for the

sensor application, and considering an effective or average electrode surface area yields

qk = II[e]({ e} + z{_c})dxdy (5.5)
S •

Substituting the strain-displacement relationships of Eqs. (3.16) and (3.17) yields

qk = rrt r , c , t_ ¥__,..jj_,e3_tu,_zW,_x)+e321,V,y_ZW,_l+e36tu,y+v,x_z2w,,_lf._xdy (5.6)

S e

Neglecting the inplane strain, since the small displacement approximation was used, Eq.

(5.6) may be simplified as

qk = II- z[e31 w,= +e3z w,_ +2e36 w,_ ]Y.xdy
S e

(5.7)

Utilizing the Navier solution of Eq. (5.1) for the transverse deflection and setting e36 = 0,

the charge of Eq. (5.7) becomes

16qob 1 n212 cos(mn-xlX2 (_1 y2qk = rc6Da e3,Zp££ (,m2 \ a Jlx, cos +

m=l n=l n2 _ y_7+b 2)

16qoae3zZp£ £ 1 Imrcx) _ cos( nn'Y _ y_ (5.8)

_r6Db m=, mz(m + nz .)2• --, COS,=1 z \ a Jl,, \ b Jlyl

_,a 2 b z )

where Zp represents the distance of the mid plane of the k th piezoceramic layer and is the

effective electrode area as shown in Figure 5.3. The effective electrode area establishes

the electrical boundary conditions to facilitate the electric displacement density. The

classic and finite element voltages due to various pressure loading applied to a simply

supported 10"xl0" plate is shown in Figure 5.4. The excellent agreement indicates that

the finite element formulation will accurately predict piezoelectric sensor voltages.
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5.2 Experimental and Analytical Comparison

The experiment was conducted using a rectangular aluminum plate with a single

piezoceramic patch bonded to the top surface. The validated finite element model was

modified to include clamped boundary conditions. A full analytical model was used to

model the complete experimental plate by using a 10x8 mesh which includes 4

piezoceramic elements and is shown in Figure 5.5. By employing a high input

impedance charge amplifier, the charge signal may be recovered and related to the

voltage generated by the piezoceramic through the intrinsic piezoelectric capacitance as

V=q/C, as described in Appendix C. Since a charge amplifier was used during the

experimental test (refer to Appendix E) the charge was converted to volts during the

analysis. It should be mentioned that if a rate of strain is desired, then a current amplifier

must be used in lieu of a charge amplifier.

The finite element simulation requires modal damping values of the plate, so they

were determined experimentally along with the natural frequencies and are shown in

Table 5.1. In the following Sections, a complete comparison of experimental and

analytical results of the static and dynamic sensor and dynamic actuation is provided.
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Experiment Analysis

Frequency Hz. Modal Damping Frequency Hz.

103.06 0.034 106.71

164.56 0.0047 173.0

236.1 0.0095 256.47

268.81 0.0007 282.58

298.94 0.004 316.70

392.9 0.0031 422.65

412.2 0.0057 433.65

488.5 0.0034 491.73

Table 5.1 Natural Frequencies and Damping Values

5.2.1 Static Sensor

The static sensor analysis was conducted in two steps. The first step implements the

small deflection assumption, however in order to accurately predict the experimental

results, a second approach including the large deflection approximation is performed.

The linear piezoelectric theory accurately predicts the sensor voltage for small pressure

loading, however for higher pressures the geometrical nonlinearities dictate the plate

deflection and thereby affect the sensor voltage. Given the fully coupled electrical-

structural formulation, the large deflection assumption includes the nonlinear electrical-

structural stiffness matrices of Eq. (3.143). It should be noted however, that there is no

nonlinear stiffness associated with the uncoupled electrical d.o.f, since the linear

piezoelectric theory assumption is maintained.

The small deflection analysis and experimental sensor voltages of a 14"x10"x0.040"

clamped plate due to uniform distributed loads are shown in Figure 5.6. Note that for

small pressure loading, the small deflection analysis results coincide with the test results.
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Thus for small pressure loading the small deflection analysis is valid. However it should

be noted that for high speed flight vehicles it is not uncommon to experience differential

pressures in the range of 3-5 psi, thus the experimental loading considered is not

unreasonably high. The non-dimensional deflection due to the large deflection analysis is

shown in conjunction with the experimental results of a 14"x10"x0.040" clamped plate in

Figure 5.7, and excellent agreement between the large deflection analysis and the test data

is achieved. Similarly the experimental and analytical sensor voltage based on the large

deflection analysis is shown in Figure 5.8. The agreement for the sensor voltage between

the analysis and the measured experimental results is not as close as the maximum

deflection. Deflections and sensor voltages from the small deflection analysis are clearly

not agreeable with the test data. The static sensor analysis was based on the assumption

that the uniform distributed loading may be modeled as a step function triggered at some

time t o. Analytically, the piezoceramic is capable of producing a static charge, however

real piezoceramics are not physically able to sustain a charge to a true DC response [26].

The static sensor experiment used was constructed to approximate a step response by

establishing a distributed load and then allowing the generated charge to dissipate, then a

ball valve was opened quickly thereby releasing the distributed load. Thus the pressure

loading is actually a transient response with a finite rise time. As the distributed loading

was increased the slope of the pressure discharge became more critical indicating that the

discharge time could no longer be assumed to be instantaneous. Therefore improved

analytical results may be obtained by simulating the transient response numerically and

computing the subsequent response through Duhamers integral.

5.2.2 Dynamic Sensor

The dynamic sensor analysis is based on the small deflection assumption since the

applied loading was within the linear analysis range. However modal damping values are

required and thus determined experimentally and are shown in Table 5.1. The

experimental tests were conducted using a point load provided by an electrodynamic
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shakerattachedto thecenterof thepanelasshownin Figure5.9. A sinusoidalexcitation

signalwasappliedto the shakerandthe subsequentpiezoceramicvoltagewasmeasured

and recorded. For the steadystate dynamic sensoranalysisthe structural d.o.f, are

transformedinto modalcoordinatesby

n

{W}= _ q, (t){_'}r = [_t]{q} (5.9)
r=l

where the q's are the modal coordinates and [_] is a reduced set of mode shapes. The

small deflection equations of motion may be obtained by substituting Eq. (3.143) into Eq.

(3.141) resulting in

[M]{W} + ([K_ ]- [Kw¢ IK¢ ]-1 [K¢_ ]){IV}= {Pw } (5.10)

The equations of motion in Eq. (5.10) may be reduced to a set of uncoupled modal

equations of much smaller d.o.f., by utilizing the modal transformation of Eq. (5.9), thus

resulting in

m,i], +Crgl_ +k_q r =Jr r =l,2,...,n (5.11)

where the small deflection assumption was imposed resulting in the linear equations of

The uncoupled equation of motion of Eq. (5.11) may be written in the followingmotion.

form as

L
_/_ + 2_'rCOr0 r + O)2qr = (5.12)

mr

The modal mass, stiffness and force are obtained from

where

{g}r ([M l [K ]){g/} = (m, , kr )

[K]= ([Kw ] - [Kwc, ][K ¢ ]-' [K # ])

(5.13)

(5.14a)

{¢/}r {p_ }= fr (5.14b)
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The modal damping (r ratios were determined experimentally, and are shown in Table

5.1. Thus the modal coordinates qi in Eq. (5.12) may be determined and substituted into

Eq. (5.9) to determine the nodal d.o.f., which are then substituted into Eq. (3.143) to

determine the sensor voltage. Note that the first order nonlinear coupling stiffness of Eq.

(3.143) is identically zero since the small deflection assumption has been applied. The

dynamic analytical sensor voltage due to a sinusoidal point load applied to a

14"x10"x0.040" clamped plate is compared with the dynamic experimental sensor voltage

in Figure 5.10. Similarly, the predicted and measured displacements of the plate center

are compared in Figure 5.11. Excellent agreement between the experimental results and

the analytical predictions are obtained for both the sensor voltage and the plate

displacement as expected, given the linear static sensor results for small deflections. The

dynamic analysis was computed using the reduced modal data set for the first eight

modes shown in Table 5.1.

5.2.3 Dynamic Actuator

Since a single piezoelectric patch was used for the experiments, and it was observed

that the resulting plate deflections were small due to piezoelectric actuation, the small

deflection analysis was employed in the dynamic actuator formulation. In the

experiment, a 120 Hz sinusoidal excitation signal voltage was amplified to 20 volts and

supplied to the piezoceramic patch. The resulting acceleration at the panel center was

measured as a time history on a fast fourier analyzer. The time domain acceleration

signal was transformed in the frequency domain and integrated twice to determine the

center plate displacement. The frequency domain integration was performed during post

processing using Matlab ©-

The actuator equation can be determined from Eq. (3.129) as

[M]{I,_.r}+([Kw]-I[NIsv+]-[K_,¢IK¢]-I[K_j_,]I{W}=-[Kw¢IKo]-'{P¢} (5.15)
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where {Pc} is the electrical loading determined from Eq. (3.126). Similarly the modal

coordinate transformation shown in Section 5.2.2 can be applied to Eq. (5.15) resulting in

mrcjr +crqr +krqr = f_

m r

The modal mass, stiffness and force are obtained from

(5.16)

(5.17)

where

{g}r ([M], [K]){g}, = (mr, kr)

[g]=([gw]-l[N1N¢]-[gw¢_lg_]-l[g_] 1

(5.18)

(5.19a)

-{g}r [Kw¢ ][Ko ]-i {pc }= fr (5.19b)

andfr is the applied electrical load determined in Eq. (3.126). Note that even though the

small deflection assumption is employed, in the actuation formulation the [N1N¢ ] term is

included since it is comprised of known quantities shown in Eq. (3.112).

The actuation voltage used in the analysis to determine P_ was applied to a single

piezoceramic actuator attached to a 14"x10"x0.040" clamped plate is shown in Figure

5.12. The actuation signal used in the experiment was a 20-volt sine wave of 120 hertz

obtained from a signal generator. The predicted and measured displacement of the plate

are compared in Figure 5.13 and excellent agreement between the predicted displacement

and test data is obtained. Since the displacement of test data is small, the signal-to-noise

ratio of the accelerometer was less than ideal resulting in the excessive noise present on

the displacement signal.
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CHAPTER VI

CONCLUSIONS

A finite element formulation exploiting the inherent electrical-structural coupled

nature of piezoelectric materials is presented and compared to experimental test results.

To verify the analytical model several tests were performed which included static uniform

distributed loading, dynamic mechanical point loading, and dynamic piezoelectric

actuation of a thin clamped plate with a bonded piezoceramic patch. The objective was to

utilize linear piezoelectric theory in conjunction with the small deflection assumption in

the finite element formulation, however the experimental tests indicated that the uniform

distributed loading of the panel resulted in geometrical nonlinear transverse deflection.

The predicted results obtained using small deflections were in excellent agreement with

the test results for small pressure loading, however they were unacceptable for larger load

values. The experimental pressure loading considered is not unreasonably high

considering typical high speed flight vehicles experience pressures within the 3-5 psi

range. Since the panel was selected to represent a typical aerodynamic structure, the

finite element formulation was updated to include the yon Karman large deflection theory

which subsequently lead to coupled nonlinear electrical-structural stiffness. The

predicted sensor voltages using the large deflection assumptions were in good agreement

when compared to the experimental results. The sensor voltages obtained using the large

deflection assumption were not as good as the predicted large deflection displacements,

however the small deflection results are clearly unacceptable for the larger pressure

loading. Excellent agreement between the predicted results and the dynamic test results

were obtained utilizing the small displacement assumption since the experimental test

used small dynamic loads.

It was discovered that the electrical-structural coupling of the piezoceramic leads to

coupled linear and nonlinear electrical-structural stiffnesses in the large deflection static

sensor. The coupled stiffness appears in the Newton-Raphson tangent stiffness
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formulation. Thus, eventhough linear piezoelectrictheory wasutilized the electrical-

structuralcouplingwassustainedthroughthelargedeflectiongeometricnonlinearity.

Experimentalmeasurementerror was introducedsince a chargeattenuationcircuit

was requireddue to the large chargesignalgeneratedby the piezoceramicpatch. The

additional capacitancealters the low frequencyresponseof the piezoceramiccharge

amplifier by decreasingthe overall time constantthus, the measurementerror may be

reducedby modelingthe effectsof the chargeattenuatorduring analysis. The charge

attenuatormay be eliminatedfrom the experimentby utilizing a smaller piezoceramic

sensor, thus compromising actuator performance,or utilizing a source follower to

measureaproportionalrateof strainin lieu of aproportionaldisplacementmeasurement.

A moreaccuratemodelof conductorsandinsulatorswould improvethe electricfield

formulation in the large deflection static sensor finite element formulation.

Improvements can be made to include more elements to accurately model the

piezoceramicwhile utilizing a symmetricalfinite element model. However, it was

observedthat it is importantto properlymodelthe electricalboundaryconditions when

usinga symmetricalmodel. Sincethe staticsensorexperimentuseda pressureloadthat

approximateda stepfunction,"thestatic sensorresultscould be improvedby simulating

the actual transient pressure loading and computing the results through numerical

integration. In addition a moreaccuratemethodof measuringthe staticplate deflection

shouldbeusedin lieu of the dial indicatorused.

Future work may be applied in the area of incorporatingpiezoelectric thermal

propertiesin the analysisor consideringthe applicationof control theory to the results.

Thepiezoceramicphysicalpropertiesshowa strongtemperaturedependencywhich may

be incorporatedin the piezoceramicconstitutive relations. Thus, a fully coupled

electrical, structural,and thermal finite elementmodel can be formulated. The finite

elementformulation was implementedin Matlab© which permits future opportunity to

incorporatecontrol andsimulationanalysis.

93



8

.

.

°

.

6.

°

.

.

10.

11.

12.

13.

REFERENCES

Mason, W. P. Piezoelectric Crystals and Their Application to Ultrasonics, D. Van

Nostrand Company, Inc., New Jersey, 1950, pp. 2-4.

Deresiewicz, H., Bieniek, M. P., Dimaggio, F. L., The Collected Papers on Raymond

D. Mindlin Volume II, Springer-Verlag, New York, 1989, p. XV.

Tzou, H. S., Anderson, G. L., Intelligent Structural Systems, Kluwer Academic

Publishers, Netherlands, 1992, p. vii.

Crawley, E. F., "Intelligent Structures for Aerospace: A Technology Overview and

Assessment", AIAA J., Vol. 32, No. 8, 1994, pp. 1689-1699.

IEEE Standard 176, "Piezoelectricity", IEEE, New York, 1978.

Lee, C. K., "Theory of Laminated Piezoelectric Plates for the Design of Distributed

Sensor/Actuators. Part I: Governing Equations and Reciprocal Relationships", J.

Acoustical Society of America, 87 (3), March 1990, pp. 1144-1158.

Dosch, J. J., Inman, D. J., Garcia, E., "A Self-sensing Piezoelectric Actuator for

Collocated Control", J. of Intelligent Material System and Structure, Vol. 3, Jan.

1992, pp. 166-185.

Callahan, J., Baruh, H., "Modal Analysis Using Segmented Piezoelectric Sensors",

AIAA J., Vol. 33, No. 12, 1995, pp. 2371-2378.

Clark, R. L., Cole, D. G., "Active Damping of Enclosed Sound Fields Through

Direct Rate Feedback Control", J. Acoustical Society of America, 97 (3), March

1995, pp. 1710-1716.

Lai, Z., "Vibration Control with Piezoelectric Actuation Applied to Nonlinear Panel

Flutter Suppression", Ph.D. Dissertation, Old Dominion University, Norfolk,

Virginia, 1994.

Allik, H., Hughes, T. Jr., "Finite Element Method for Piezoelectric Vibration",

International J. for Numerical Methods in Engineering, Vol. 2, pp. 151-157, 1970.

Tzou, H. S., Piezoelectric Shells, Kluwer Academic Publishers, Netherlands, 1993,

p. 462.

Zhou, R. C., "Finite Element Analysis For Nonlinear flutter Suppression of

Composites Panels at Elevated Temperatures Using Piezoelectric Materials", Ph. D.

Dissertation, Old Dominion University, Norfolk, Virginia, 1994.

94



14. Zhedudev, I. S., Physics of Crystalline Dielectrics, VoL 2 Electrical Properties,

Plenum Press, New York, 1971, pp. 600-601.

15. Anderson, E. H., Hagood, N. W., "Simultaneous Sensing/Actuation: Analysis and

Application to Controlled Structures", J. of Sound and Vibration, 1994, 174(5), pp.

617-639.

16. Jordan, E. C., Balmain, K. G., Electromagnetic Waves and Radiating Systems,

Prentice-Hall Inc., New Jersey, 1968, pp. 101-102.

17. Tiersten, H. F., Linear Piezoelectric Plate Vibration, Plenum Press, New York,

1969, p. 34.

18. Gibson, R. F., Principles of Composite Material Mechanics, McGraw-Hill Inc., New

York, 1994, p. 47.

19. Eer Nisse, E. P., "Variational Method for Electroelastic Vibration Analysis", IEEE

Transactions On Sonics and Ultrasonics, Vol. SU-14, No. 4, October 1967, pp. 153-

160.

20. Dixon, I. R., "Finite Element Analysis of Nonlinear Panel Flutter of Rectangular

Composite Plates Under a Uniform Thermal Load", M. S. Thesis, Old Dominion

University, Norfolk, Virginia, 1991, pp. 42-48.

21. Product Catalog, Morgan-Matroc Inc., Electro Ceramics Division, Bedford, Ohio,

1993.

22. Halliday, D., Resnick, R., Fundamentals of Physics, John Wiley and Sons, New

York, 1974, pp. 510-513.

23. Instruction Bulletin B- 137-15, Micro-Measurements Division, Measurements Group,

Inc., Raleigh, North Carolina.

24. Timoshenko, S., Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-Hill

Inc., New York, 1959, p. 110.

25. Chia, C. Y., Nonlinear Analysis of Plates, McGraw-Hill Inc., New York, 1980, pp.

65 -69.

26. Serridge, M., Licht, T. R., Piezoelectric Accelerometer and Vibration Preamplifier

Handbook, Brtiel & Kja_r, Denmark, 1987

27. Product Catalog, PCB Piezotronics, Inc., Depew, New York.

95



APPENDIX A

TRANSFORMATION MATRICES

The element used in the finite element model is a rectangular element consisting of

twenty four structural degrees of freedom, accounting for bending and membrane

displacements plus an additional electrical degree of freedom for each piezoelectric layer.

The rectangular element consists of four comer nodes with displacements w, u, v and

their derivatives w x, wy, wxy. The electrical d.o.f.'s are represented by the voltage V

uniformly distributed over one side of the piezoelectric electrode, see Figure 3.1.

Coordinate transformations are required to relate the local element coordinates to the

global structural coordinates. The membrane nodal displacements, given by

are obtained using the bilinear approximation functions in Eq. (3.6). The nodal

membrane displacements can be obtained by substituting the element nodal coordinates

into the appropriate approximation functions. Thus the membrane nodal displacements

become

u,(O,O,t)=b, (A1)

u2(a_,O,t)= bl +b2ae (A2)

u3(ae,be,t)=b I +b2ae +b3b e +b4aebe (A3)

u4(O,b_,t ) = b 1 +b3b_ (A4)

v,(O,O,t)=b s (AS)

v2 (a_, 0. t) = b 5 + b6a. (A6)

v3(ae,be,t)=b5 +b6ae +b7b_ +bsaeb_ (A7)
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174 (0_ be, t) = b 5 .-[-b 7b e

where the element length and width are a e and be

coordinates are represented by the b coefficients.

The membrane displacements in Eqs. (A1-A8) may be written in matrix notation as

(A8)

respectively and the generalized

/'/1

U 3

U3

U4

Vl

v2

v3

114,

-1

1

1

1

0

0

0

0

0 0 0 0 0 0

a e 0 0 0 0 0

ae be aeb_ 0 0 0

ob_ o ooo o
0 0 0 1 0 0 0

0 0 0 1 a_ 0 0

0 0 0 l ae b_ aeb _

o o o lObo 0

0 "b1

0 b_
0 b_

b4
b_
b6
b7

bs.

(A9)

Similarly the bending transformation is determined using sixteen d.o.f. Thus the sixteen

bending nodal displacements are

{'wb } T = {'Wl "W2 "W3 "W4 W,x I W, x2 W_x 3 W, x4

"W_y1 "W,y2 "W_y3 W_y 4 "W_xyI "W_xy2 w,w3 w,x_ (A10)

The displacements are approximated using the cubic polynomial defined by Eq. (3.4).

Thus, the derivative expressions are given by

w, x =a 2 + 2aax + asy + 3a7 x2 + 2asxy + agy 2 + 3allx2 y

+ 2a12xy 2 + a13Y 3 + 3a14x2Y 2 + 2a_sxy 3 + 3a16x2Y 3 (All)

W,y -._ a 3 + as x + 2a6Y + asx 2 + 2agXy + 3aloY 2 + allx 3

+ 2a:2x2 y + 3a:3xY 2 + 2a_4x3y + 3a_sx2 y z + 3aa6x 3y 2 (A12)
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w,_y = a 5 + 2asx + 2agy+ 3ax_x 2 +4a_2xy

+3a13Y 2 +6a14x2y+6alsxy 2 +9a16x2 y 2 +3a16x3 y 2 (A13)

The nodal bending displacements are obtained by substituting the nodal coordinates into

Eq. (3.4) and Eqs. (A4-A6). Thus the transverse displacements are given as

w_(O,O,t)=aa (A14)

w2(ae,O,t)=a x +aza_ +a4a _ +aTa3e (A15)

w3(ae,b_,t)=a 1 +aza e +a3b e +a4a2e +asaeb e +a6b2e

+agaeb _ +a10b3e +aHa3ebe + a12a e2b_2

+a13a,+a1,4#+al,4b 

w4(O,b_,t)=a I +a363...}-a6 b2 +a,ob3e

(A16)

(A17)

Likewise, the slopes with respect to the x-axis are

W,x I (O,O,t)=a 2 (A18)

w,_2 (a.,O,t)=a2 + 2a4a e + 3aTa _ (A19)

w,_3 (a_,be,t)=a2 + 2a4ae +asbe +3a7a _ + 2asa.be

+a9b _ +3aHa2ebe +2aazaeb_ z +a13b3e

2 2
+3a14a, b e + 2alsa, b 3 +a16aZeb_

W, x4 (O,b.,t)=a2 +asb e +a9 b2 +a,3b 3

(A20)

(A21)
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The slopes with respect to the y-axis are

W,y, (O,O,t)=a 3 (A22)

3
W, y2 (ae,O,t)=a3 +asa. +asa_ +allae

w, y3 (ae,be,t)=a3 +asae +2a6b e +asa2e +2a9aeb e

+ 3alo b2 +a,aa _ + 2al2aZ_be + 3a1362e

+ 2a14a3ebe + 3al, a2bZe + 3a16a3b2e

(A23)

(A24)

W,y 4 (O, be,t)=a3 + 2a6b e + 3a10 b2 (A25)

The rotations about the z-axis are

W.xy 1 (0, O,t) = a 5 (A26)

W, xy2 (ae,O,t)=a, + 2asa e + 3alaa _ (A27)

w,._3 (ae,be,t) = a5 + 2asae +2agb e +3an a2

+ 4a12 a eb e + 3a13bE + 6a14 ee2b e

+6aasaeb_2 2 2+ 9a16 ae be (A28)

W, xy4 (O,b_,t)=a, + 2agb _ + 3a,3b _ (A29)

Equation (A14-22) may be expressed in matrix notion as {w b } = [Tb]-1 {a} where [Tb ]-1 is

defined as
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APPENDIX B

COORDINATE TRANSFORMATION

B.1 Transformed Reduced Stiffness Matrix

The stress-strain relations for a thin orthotropic layer are of the form

I 11ot
r,2 0 Q66/Lr,2

(B1)

where the subscripts I and 2 refer to material coordinate directions. The reduced stiffness

matrix, [Q] is a function of engineering constants as follows

QH = E1 (B2)
1 - VlzV21

Q12- v12E2 (B3)
1 -- VI2V21

Q_2 = E2 (B4)
1 - VI2V21

Q66 = G12 (B5)

The stresses in the material coordinate system can be transformed into the global x-y

coordinate system by

f xtrcos2osin2o2s/ oso]f lt_ =lsin20 COS20 2sinOcosO0"2
vxy ksinOcosO -sinOcosO cosZ O-sin2 0 Vl2

}=[L(o ,

L'rxy

(B6)
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The strain transformation can be expressed as

f xt[cos2osin2osino o o]f ,)Cy = sin 20 cos 20 - sin Ocos 0 _2

Y_y -2sinOcosO 2sinOcosO cos20-sin20 Y12

=[r_(o _2
LY3 )

(B7)

where 0 is the lamination fiber angle with positive rotation from the x-axis with respect

to the principal material coordinate/-axis as shown in Figure B 1. Combining Eqs. (B 1-

B7) yields the laminate transformed reduced stiffness matrix

 161t xt
Z'xy LQ16 Q26 -Q66 7xy

(B8)

where

[_]= [L(o)]-'EQ][r_(o)] (B9)

B.2 Transformation of Piezoelectric "d" Constants

Actuation strain shown in the stress-strain relations is proportional to the piezoelectric

d constants and are presented in matrix form

I:°°° 15!][d]= o o 4_ o
431 432 433 0 0

(BlO)

This research assumes thin piezoelectric layers polarized in the 3-direction and isotropic

Thus the piezoelectric constant matrix is reduced to

[°0°!][d]= o .

in the 1- and 2-directions.

(B11)

The actuation strain may be represented as
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d31 }{s _ } = [d]r {E} = E3 ld_2 (B12)

Transformation of the principal material coordinates of the d constants to the global

coordinates may be accomplished by utilizing the strain transformation

fdx} t
d_y

(B13)

Thus for the isotropic assumption of the piezoceramic layers,

d£ = 1

d_y

(B14)
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C.1 Introduction

Electric charge establishes

APPENDIX C

ELECTROSTATICS

an electromagnetic field. The strength of the

electromagnetic field is a function of the magnitude, location, velocity, and acceleration

of the charges present. An electrostatic field results from stationary charges, hence is a

function of position only. In the special case of electrostatics, note that the terminology is

modified by dropping magnetic from the root electromagnetic. This infers that magnetic

results from dynamic charge behavior. In essence, electric charges in motion (i.e. electric

current) produce a magnetic field.

C.2 Electrostatic Fields

Coulomb's Law established experimentally, that a force exist between two charged

bodies, which tend to repel or attract each other. The direction of the force depends on

whether both bodies have similar or dissimilar charges. If two small spherical bodies,

each of charge ql and q2 respectively, are present in an infinite homogeneous insulating

medium separated by distance r, then Coulomb's force is expressed as

F- qlq2 (C1)
4rc£r 2

The direction of the force is along the line between the two charges, where £ is called

the permittivity or dielectric constant of the medium. In free space or a vacuum, £ is

defined as Co=8.854x10-12 Farad/meter, where the subscript o indicates free space. The

permittivity of other materials are referenced to the permittivity of free space through

their relative permittivity, that is e=_oEr . In the MKS system, the unit of charge was

previously defined as the coulomb (one ampere of current flowing for one second

transports one coulomb of charge). Thus in order to leave Maxwell's field equations
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independent of the constant 4rr, the units of Coulomb's force law were rationalized by a

constant of 4rr.

In the above example imagine that the q2 charge is fixed and consider ql as being

available to move about, i.e. a test probe charge. As the test probe charge is located at

various positions near the fixed charge it experiences a force. The magnitude and

direction of the force depends on the location relative to the fixed charge. Hence

surrounding the fixed charge there exists an electric force field. This electric force field

is described to have a strength E, which has units of force per unit charge. The

magnitude of the force is given by Eq. (C1) and the magnitude of the electric field

strength is

E - q (C2)
4_v£r z

Note that the magnitude of the force is directly proportional to the magnitude of the test

probe charge, however the electric field strength is defined as a force per unit charge thus

independent of the magnitude of the test probe charge. Hence if the magnitude of the test

charge approaches zero, the force diminishes; however the normalized force remains

constant. Thus the electric field resulting from a charge exists, regardless of the presence

of a test probe charge. In effect the test charge can be utilized to verify the existence of

an electric field, and abstractly, if any charge q exists, then an electric field exists. The

electric field around a point charge is a vector quantity and can be written as

E - q _ (C3)
4rcer 2

where _ is a unit radial outward vector from charge q.
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C.3 Electric Displacement

Equation (C3) indicates that the electric field is a function of the magnitude and

position of the charge and the permittivity material. It is desirable to introduce the

electric displacement or electric flux, that is independent of the material permittivity. The

electric flux is best described by the results of Faraday's famous experiment with

concentric spheres [16]. Faraday placed a metallic sphere with charge Q inside of another

metallic sphere. Great care was taken to keep the spheres separated at all times. Then the

outer sphere was grounded to earth for a very short time and then again with great

diligence using insulating tools the inner sphere was removed. Once the outer sphere was

reassembled, the charge on it was measured. The charge on the outer sphere was found to

be equal and opposite in sign to the charge placed on the inner sphere. This experiment

was repeated for several sphere sizes and with several dielectric materials and the results

were always the same. Hence there is an electric flux or displacement through the

dielectric. The displacement being a function of the magnitude of charge and

independent of permittivity

q-'=Q (C4)

Consider an isolated point charge far from any other particle. The electric displacement

density or electric displacement per unit area on any point of a sphere surrounding the

point charge is

D- - q (C5)
4nr 2 4_r 2

The displacement density is a vector quantity with its direction outward normal to the

sphere

D = g/ f (C6)
4_:r 2
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Upon examination of Eq. (A.3) and Eq. (A.6), D and E are related and can be written as

the electromagnetic constitutive relation

D =EE

where the permittivity is a tensor for the most general anisotropic materials

_'ll _12 _13 1

£=[£12 622 623[

[.613 623 _33 .]

(C7)

(C8)

C.4 Potential Function

The electric field is a conservative force field. Hence there is no dissipation

mechanism and all energy must be stored in either potential or kinetic form. The work

done, on the system above, in moving the test probe charge around the fixed charge, i.e.

against the force F, can be calculated as

= _ fwork Fdr

As with any conservative force field an arbitrary reference may be chosen.

above, infinity is commonly selected as the reference.

probe charge is

(C9)

As shown

Thus the work done on the test

work = - [__r
.to 4zc6r 2

qlq2 (C10)
4_rffR

The normalized work done on the test probe charge is defined as the electric potential at a

point due to the presence of charge ql, hence

V -- work - q_ (C11)
unit charge 4z6R
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Note that potential is a scalar quantity. The potential has a unit of joule per coulomb

which is the MKS units for a volt. For electrostatics, the terms potential, potential

difference and voltage are synonymous. Another useful relationship is the differential

work or differential voltage required in moving a positive unit charge an infinitesimal

distance. For example, the differential work is

dW = dV = -E. ds (C12)

where dVcan be expressed as VV.ds, thus E = -VV and the electric field strength at any

point is simply the negative of the potential gradient at the point. If Eq. (C12) is

integrated the potential difference will become much clearer. For example, consider the

potential difference between two points a and b as

dV =- f E.ds (C13)

Thus the potential difference between point a and b is

eb

Va -V b = J_E.ds (C14)

C.5 Capacitance

The capacitance between two conductors is defined as the ratio of charge on the

conductors, to the voltage or potential difference between each of the conductors

C= Q (C15)
V

Note that the capacitance is defined irrespective of the size and shape or distance between

the conductors. Gauss's law can be used to verify that the total charge on one of the

conductors is indeed proportional to the potential difference, and the proportionality is

capacitance.
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C.6 Electrostatic Energy

When a capacitor is charged, a voltage or potential difference exists between the

conductors. As previously discussed, the voltage will establish a conservative electric

force field between the two conductors. Thus energy storage is present in a charged

capacitor, since no dissipation mechanism exists within a conservative force field. The

amount of energy stored, is simply the work required to charge the capacitor. Recall that

potential was defined as work done per unit charge in Eq.(C11), thus the differential work

is

dW = Vdq (C 16)

and the total work is computed as

= (C17)
W= 2C

The stored energy of a charge capacitor can also be written as

U=Iv2c (C18)
2

Another approach to visualize the energy stored or work done in charging a capacitor is to

consider the necessary energy required in establishing a charge distribution in space. If a

free space is considered, and N discrete charges are brought into a given volume, then the

work done or energy expended in locating the charges will be

W 1 N N
8rc£ZZ qiqj

i=1 j=l R/j

i¢j (C19)

If a continuous charge distribution is considered instead of discrete charges, Eq. (C19)

can be written in integral form as

W = 1_____
_ pc(r')p_(r2) dV_dV- 2 (C20)

8rc£ _, _
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where qi and qj were replaced with volume charge densities pc(rl)d_ and pc(r2)d_

respectively, and R = [r_ - r2[. Recall that potential is defined as work per unit charge in

Eq. (C 11), so work done on the charge distribution can be written as the potential by

W
V(r) -

jOc (rl)

4roe J R 2
(c21)

Substituting Eq. (C21) into Eq. (C20) expresses the work necessary to create a continuous

charge distribution

wml2 p(r)V(r)dg (C22)

If the vector identity V. (VD)= VV. D + D. V V is applied to Eq. (C22) it may be re-

written as

1
= 2 W. DdV

2

= 1-IVD.aa+ 1-IO.E# 
2 s 2_

(C23)

For a piezoelectric generator, the externally applied voltage is zero and a mechanical

deformation or strain results in a Maxwelrs self induced electric field. The electrical

energy density thus becomes

1 [D. Ed_: (C24)
W 2_
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This work formulation assumes that there is no free or space charge present within the

piezoceramic.
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APPENDIX D

PIEZOCERAMIC ADHESIVE

The adhesive used to bond the piezoceramic patch to the panel was Micro-

Measurements GA-2 strain gage adhesive system [23]. The GA-2 system is an epoxy

adhesive that is combined with the hardener 10-A. The adhesive is specified to have 10%

to 15% elongation capabilities after 40 hours of curing time at 21o C. It is recommended

that a clamping force of 5-20 psi be applied to the patch during the curing process to

assure a complete bond. Once the epoxy is mixed with the hardener the pot life is

approximately 15 minutes at 21 ° C. The adhesive is a dielectric which prohibits

electrical conduction between the piezoceramic and the plate.
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APPENDIX E

CHARGE AMPLIFIER DATA

The charge amplifier used, model number 422M77, was provided by PCB

Piezotronics, Inc. [27]. The gain is fixed at 0.2537 mV/pC with a bias voltage of 11.09

V, a feedback capacitance of 4000 pF and a feedback resistance of 3xl 08 ohms.
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